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Preface

In the spring of 1992, I was selected to the New York City math team that traveled to Ithaca for
the New York State Math League championships. The selection was mostly due to my performance
on citywide competitions throughout the year; I had done well enough to play on the NYC B team
and we did pretty well that day.

Before I left for Ithaca, my coach, Harry Rattien, talked with me about how he was looking forward
to the “little fish in a big pond” phenomenon that I would experience over the NYSML weekend.
He explained that I had done very well at Townsend Harris High School and that (particularly
because THHS is a humanities magnet school) I was doing better than my classmates, but I was
about to take a trip to a statewide competition with a bunch of my peers and my game would need
to rise to the occasion.

I felt completely unprepared for NYSML1992. It kicked my butt.

What NYSML1992 did for me was noteworthy. I was frustrated by mathematics for really the first
time, and I knew that I would have to learn so much more mathematics and make so many more
mistakes as I tried to understand higher and higher concepts. That Saturday in Ithaca helped to
form the mentality that I have taken with me into my math team coaching life, into my pedagogy
(for all courses, not just honors courses), and into my life as a whole.

The New York State Mathematics League was founded in 1973 by Alfred Kalfus, whose vision was
to have students from across the state gather for face-to-face competition annually. As a result,
thousands of students have come together to compete over the years, deepening existing friendships
while forging new ones, and working individually and corporately on some of the most challenging
problems available to high school students.

NYSML moves from location to location each year as different member leagues take responsibility
for hosting. Some of our member leagues hail from the I-90 stretch of the New York State Thruway
(the Monroe County Math League, the Onondaga County Math League, and the Albany Area Math
Circle). Others are from the more central part of New York (the Genesee Valley Math League, the
Ithaca High School math team, and the Southern Tier Interscholastic Math League). There is a fair
concentration of teams from the I-87 corridor close to New York City (the Duchess-Ulster-Sullivan-
Orange Math League (DUSO), the Rockland County Math League, and the Westchester-Putnam
Math League). Teams also come to NYSML from the New York City / Long Island area (the New
York City Math Team, the Nassau County Interscholastic Math League, and the Suffolk County
Math League). As always, NYSML is looking for more leagues to join, and we welcome suggestions
that would make our membership more representative of the state as a whole.

The contest begins with a Team Round, where teams of 15 students work collaboratively to solve ten
problems in 20 minutes. The teams then work collaboratively on the Power Question, in which the
questions revolve around a central theme and results are proven with rigor. The Individual Round
follows; students answer ten questions in five pairs, taking ten minutes for each pair. The last
round is the Relay Round, in which sub-teams of three try to answer a string of questions, where
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vi Preface

the answer to the first question is needed to solve the second, and the answer to the second question
is needed to solve the third; only the third person’s answer is scored.

Those four rounds are the only rounds that count toward overall team and individual results. In
the Team Round, each correct answer earns 5 points. It is not unusual for the top teams to earn
45 or 50 points in the round, but the average for all teams has been about 25 points. The Power
Question is worth 50 points, and scoring in this round runs the gamut from teams earning almost
all of the points to teams earning very few points. Each Individual problem is worth 1 point per
contestant, meaning that the team can earn as many as 10 · 15 = 150 points on this round. Very
few teams earn more than 100 of those 150 points. On the Relay Round, only the third person’s
answer is scored. If the group of 3 gets the problem correct within 3 minutes they earn 5 points,
and a correct answer within 6 minutes earns 3 points. Thus, each relay is worth a maximum of
5 · 5 = 25 points; most teams end up scoring about half of the possible number of points for the
round.

The Tiebreaker Round follows the relays. Students with high Individual Round scores come to the
front of the auditorium and answer questions one at a time, using their times to break ties and
award final prizes. The Individual Champion earns the Curt Boddie Award in memory of Curt,
who was NYSML’s President for many years.

NYSML has an executive board that oversees the contest. I currently serve as President. Mike Curry
is our Executive Director. Our Vice President is Anchala Sobrin, and our Treasurer is Kim Dwyer.
We serve at the pleasure of the league, and our joy is in seeing the students enjoy mathematical
competition on a spring weekend each year.

I became head author in 2010, after the death of Dr. Leo J. Schneider, who had been NYSML’s main
author since 2000. My first job was to ensure that NYSML2011, which had been basically written
by Leo, was edited and brought to print in time for competition. After NYSML2011, we decided
to use a committee approach to help mitigate against biases in topic areas that might be present if
there were a small number of authors. The current author committee includes Matthew Babbitt,
Stan Kats, Jason Mutford, Dick Olson, and Tom Weisswange. Questions are proposed in the late
summer. Drafts are sent to the committee in October. Solutions are written and edited and
rewritten and reedited. In recent years, Chris Jeuell has helped with the final editing process. I
will also note that some of the Power Questions in this book were authored by Dave Phillips, and
the 2015 Power Question was authored by Oleg Kryzhanovsky and Stan Kats. NYSML is grateful
to every person who has contributed to our contests over the years.

This book was assembled using files that Chris Jeuell created. We are grateful for the way Chris
continues to give of himself for the benefit of the mathematics community.

The NYSML executive board is proud of the work we do, and we hope this book helps you to grow
as mathematicians and as problem solvers. Enjoy!

George R. Reuter, Jr., President of NYSML
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2011 Team Problems

T-1. Suppose that a small state which has been issuing automobile license plates consisting of four
digits from 0000 through 9999 decides they need more plates. So, they discontinue their four-
digit plates in favor of four-letter plates from AAAA through ZZZZ. Compute the number
of additional plates available when using four letters instead of four digits.

T-2. Let x, y, and z be digits in the base three numeral system with x 6= 0. Compute the sum of
all n for which n = 5 · xyzbase three = 2 · xyzbase five

T-3. Compute x so
log2(log3(log4(x)))

log4(log3(log2(x)))
= 0.

T-4. Compute the number of triples (x, y, z) of positive integers for which 4x+ 4y+ z = 2011.

T-5. Let A(7, 1, 2), B(13, 9, 2), C(1, 18, 2), D(7, 1, 12), E(13, 9, 12), F (1, 18, 24) be the six points in
x-y-z-space that are the vertices of a convex polyhedron P . Compute the volume of P .

T-6. Let f(x) = x2 +bx+c for constants b and c, let g(x) = f(f(x)), and suppose that the graph of
y = g(x) is symmetric about the y-axis. Given that the y-intercepts of the graphs of y = f(x)
and y = g(x) differ by 60 and one is positive and the other is negative, compute the y-intercept
of the graph of y = g(x).

T-7. Planar polygon ABCD is a kite suspended in xyz-space, with A = (4, 5, 9), B = (10, 11, 17),
and C = (20, 11, 23). A plane P perpendicular to the xy-plane contains diagonal BD. An
(x′, y′)-coordinate system is imposed on plane P with the same unit of measure as in that
used in the xyz-coordinate system. The x′-axis is parallel to the xy-plane, and the y′-axis is
parallel to the z-axis. In the (x′, y′)-coordinate system, the equation of the line containing
BD is y′ = mx′ with m > 0. Compute m.

T-8. Each edge of cube C measures 2011. Line ` is perpendicular to a face of C at its center. The
cube is rotated around `, and R is the set of all points touched by C in its rotation. Sphere
S is the smallest sphere containing C. Let C, R, and S be the volumes of C, R, and S,

respectively. Compute
S −R
C

.
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2011 Team Problems 3

T-9. In 4ABC, AB = 24, AC = 10, and BC = 26. Points Di are on side AC, and ADi = i for
i = 1, 2, . . . , 9. Points Ei are on BC and DiEi ⊥ AC for i = 1, 2, . . . , 9. Points Pi are on DiEi

so that
DiPi
DiEi

=
ADi

AC
for i = 1, 2, . . . , 9. Compute

9∑
i=1

DiPi.

T-10. When n is a positive even integer, a deck of n cards numbered 1 through n can be given a
perfect out-riffle or a perfect in-riffle by dividing the deck into halves, top and bottom, and
then interleaving the cards, with the top card in the original order going on top in the out-riffle
and going second from the top with the in-riffle. For example, when n = 6, the results of an
out-riffle and followed by an in-riffle are shown:

Original Order Out−Riffle the Original In−Riffle the Outriffle
1 1 ⇒ 1 5⇒ 5
2 4⇒ 4 1 ⇒ 1
3 2 ⇒ 2 3⇒ 3
4 5⇒ 5 4 ⇒ 4
5 3 ⇒ 3 6⇒ 6
6 6⇒ 6 2 ⇒ 2

Let n = 52 with the original order being an increasing order from 1 through 52. The deck
then undergoes a long sequence of an equal number of out-riffles and in-riffles in some random
order. Afterwards, card number 22 is in the 47th position from the top and card 31 is in the
kth position from the top. Compute all possible values of k.



2011 Team Answers

T-1. 446976

T-2. 180

T-3. 64

T-4. 125751

T-5. 1050

T-6. 60− 2
√

15

T-7.
1√
13

or

√
13

13

T-8.

√
3π

2
− π

2
or equivalent simplified result

T-9. 39.6 or 393
5 or

198

5

T-10. 6

4



2011 Team Solutions

T-1. The answer is 264 − 104. Use any of the following computational trails to the answer.
One could notice that 264 − 104 = 456976− 10000 = 446976.
One could also notice that 264−104 = (262−102)(262+102) = (26−10)(26+10)(4)(169+25) =
16 · 36 · 4 · 194 = 446976.

T-2. Since 5(9x + 3y + z) = 2(25x + 5y + z), we have 3z = 5(x− y) so z must be a multiple of 5
and (x− y) must be a multiple of 3. Since x, y, z ∈ {0, 1, 2}, it follows that z = 0 and x = y.
Hence the possible values of n are n = 5 · 110base three = 5 · 12 = 60 = 2 · 30 = 2 · 110base five

and n = 5 · 220base three = 5 · 24 = 120 = 2 · 60 = 2 · 220base five. Their sum is 60 + 120 = 180.

T-3. A fraction equals zero provided its numerator equals zero and its denominator is defined and
does not equal zero.

log2(log3(log4(x))) = 0⇐⇒ log3(log4(x)) = 1⇐⇒ log4(x) = 3⇐⇒ x = 43 = 64

We need to check that for x = 43 = 26, the denominator is defined and not zero. Note that

log4(log3(log2(26))) = log4(log3(6)) and 1 = log3(3) < log3(6) < log3(9) = 2,

so 0 = log4(1) < log4(log3(6)) < log4(2) = 1/2 and therefore the denominator is defined and
non-zero.

T-4. Since for each pair of positive integers (x, y) there will be at most one positive integer z so that
4x+ 4x+ z = 2011, we need only count the number of ordered pairs (x, y) for which there is a
positive integer z satisfying the equation. If 4x+4y+z = 2011, then x+y = 502+ 3−z

4
≤ 502.

The number of pairs of positive integers (x, y) for which x+y = n is n−1 for n = 1, 2, . . . , 502,

so our answer is 1 + 2 + · · ·+ 501 = (1+501)(501)
2

= 125751.

T-5. The polyhedron can be partitioned into a prism Q with faces 4ABC and 4DEG and a
tetrahedron T with base 4DEG and vertex F where G is the point (1, 18, 12). In the z = 2
plane, the slopes of AB and BC are 9−1

13−7
= 4

3
and 18−9

1−13
= −3

4
, so AB ⊥ BC. Therefore the

area of 4ABC is 1
2
(AB)(BC) =

√
(9−1)2+(13−7)2·

√
(1−13)2+(18−9)2

2
= 75, and the volume of Q

is 75(12 − 2) = 750. Since 4DEG ∼= 4ABC, the volume of T is 1
3
(75)(24 − 12) = 300.

Consequently the volume of P is 750 + 300 = 1050.

T-6. Since g(x) = (x2+bx+c)2+b(x2+bx+c)+c = x4+2bx3+(b2+2c+b)x2+(2bc+b2)x+(c2+bc+c) is
symmetric about the y-axis, the coefficients of x3 and x must be zero, so b = 0. The difference

5



6 2011 Team Solutions

between the y-intercepts is g(0) − f(0) = (c2 + c) − c = c2 = 60, so c = −2
√

15 since the
intercepts differ in sign. Thus, g(0) = c2 + c = 60− 2

√
15.

T-7. The diagonals of any kite intersect at right angles, and since

AB =
»

(10− 4)2 + (11− 5)2 + (17− 9)2 =
√

136 =
»

(20− 10)2 + (11− 11)2 + (23− 17)2 = BC,

it follows that the diagonals AC and BD intersect at the midpoint E = (12, 8, 16) of AC.
Compute m from the slope of the line segment BE. Since plane P is perpendicular to the
∆y′

∆x′
= 17−16√

(12−10)2+(8−11)2
= 1√

13
.

T-8. For convenience in computation, let C have side s. Then R is a cylinder of radius r =
√

2
2
s

and height h = s, and the radius of S is ρ =
√

3
2
s. Consequently,

S −R
C

=
4
3
πρ3 − πr2h

s3
=

4
3
π
Ä√

3
2
s
ä3 − π

Ä√
2

2
s
ä2
s

s3
=

√
3π

2
− π

2
.

T-9. Let A = (0, 0), B = (0, 24), and C = (10, 0). Then Di = (i, 0), Ei = (i, 24−2.4i), and

9∑
i=1

DiPi =
9∑
i=1

DiEi · ADi

AC
=

9∑
i=1

(24− 2.4i) · i
10

=
9∑
i=1

2.4i− 0.24i2 = 2.4
(9)(10)

2
− 0.24

(9)(10)(19)

6
= 39.6.

T-10. Note that after every out-riffle and in-riffle, cards that were symmetric with respect to the
center remain symmetric to the center. Since cards numbered 22 and 31 start out symmetric
with respect to the center, they will remain symmetric to the center. Since card number 22
in position 47 is in the 6th position from the bottom of the deck, card number 31 will be in
the 6th position from the top.



2011 Individual Problems

I-1. Let x1 = 1000, x2 = 1001, x3 = 1002, x4 = 1010, . . . , x54 = 2222 be the increasing sequence
of all four-digit integers that can be written using only the digits 0, 1, and 2. Compute j so
that xj = 2011.

I-2. If r is chosen at random from {0, 1, 2, . . . , 10}, compute the probability that there exists an
integer x so that x2 leaves a remainder of r when divided by 11.

I-3. Compute the ordered triple (a, b, c) of base 12 digits if
√

14641base 16 = abcbase 12. (Use
0, 1, 2, . . . , 9, T, E as the twelve base 12 digits.)

I-4. A round picture is centered in a square frame. The visible region inside the square frame has
area A. The area of the region that is inside the frame and covered by the picture is equal to
the area of the region that is outside the picture but inside the frame. The smallest square
frame that will enclose the circular picture has a visible region of area B. Compute B/A.

I-5. A polyhedron has exactly 8 triangular faces and exactly 6 octagonal faces. Compute the
number of corners the polyhedron has.

I-6. A fair coin is flipped 50 times, and the result is 25 heads and 25 tails. Let p be the probability
that during these 50 flips the difference between the number of heads and the number of tails
is never larger than 1. When p = 2α3β · · · is written as a product of distinct primes to integer
powers, compute α, the power of 2.

I-7. Compute the quadruple (w, x, y, z) for which

2 · w + 0 · x+ 1 · y + 1 · z = 2

1 · w + 2 · x+ 0 · y + 1 · z = 0

1 · w + 1 · x+ 2 · y + 0 · z = 1

0 · w + 1 · x+ 1 · y + 2 · z = 1.

I-8. For n ≥ 3, let f(n) be the number of subsets of three elements that can be chosen from a set
of n distinct elements. Compute

101∑
n=3

1

f(n)
.

7



8 2011 Individual Problems

I-9. The first quadrant of the xy-plane is painted in horizontal stripes, alternating red and blue.
The stripes are 1 unit wide and the lowest stripe is red. Compute the sum of the lengths of
the intervals on the x-axis, for 0 < x < 12345, where the graph of y = log10(x) is in a blue
stripe.

I-10. A circle of radius r is inscribed in quadrilateral ABCD, and AB = 8, CD = 18, AB ‖ CD,
and BC = AD. Compute r.



2011 Individual Answers

I-1. 32

I-2.
6

11

I-3. (2, 0, 1)

I-4.
2

π

I-5. 24

I-6. 21π

I-7.

Å
1

2
,−1

2
,

1

2
,

1

2

ã
I-8.

15147

10100

I-9. 9090

I-10. 6

9



2011 Individual Solutions

I-1. There are 33 = 27 numbers 1abc with a, b, c ∈ {0, 1, 2}, so x28 = 2000 and x27+i = 2abc when
xi = 1abc. Since x5 = 1011, it follows that x32 = 2011. The answer is 32.

Alternate Solution: Half of the 54 xi begin with 1 and half with 2, so x27 = 1222, x28 = 2000,
x29 = 2001, x30 = 2002, x31 = 2010, and x32 = 2011. The answer is 32.

Alternate Solution: Note that the increasing sequence of positive integers written in base 3
notation is precisely the same, in notation, as the sequence of base 10 integers that can be
written with the digits {0, 1, 2, }. To find the position of 2011 among the four-digit numbers,
we subtract the number of positive integers with three or fewer digits:

2011base three−222base three = [(2)33+(1)3+1]−[(2)32+(2)3+2] = 58base ten−26base ten = 32base ten.

Alternate Solution: The sequence can be thought of as four-digit numbers in base 3. Since
x1 = 10003 = 1 · 33 + 0 · 32 + 0 · 3 + 0 · 1 = 27 and 20113 = 2 · 33 + 0 · 32 + 1 · 3 + 1 = 58, then
i = 58− 27 + 1 = 32.

I-2. Since the remainders of x2 and (x + 11)2 are the same when divided by 11, we check the
remainders for 02 through 102. Notice: 02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 11 + 5,
52 = 2(11) + 3, 62 = 3(11) + 3, 72 = 4(11) + 5, 82 = 5(11) + 9, 92 = 7(11) + 4, 102 = 9(11) + 1.
Thus one can see that the only possible remainders are 0, 1, 4, 9, 5, 3. The answer is 6

11
.

Alternate Solution: Note that only 02 leaves a remainder of 0; and that for 0 < x < 11, the
numbers x2 and (11 − x)2 leave the same remainder when divided by 11. To see that there
are five non-zero remainders, we need simply check that the remainders for 12, 22, . . . , 52 are
all distinct. As in the main solution, the answer is 6

11
.

I-3. For any base b > 6,
√

14641base b =
√
b4 + 4b3 + 6b2 + 4b+ 1 = (b + 1)4/2. Let b = 16. Then

(16 + 1)2 = 289 = 288 + 1 = 2·122 + 1 = 201base 12. The answer is (2,0,1).

I-4. The large frame is s× s, the round picture has radius r, and the small frame is 2r× 2r. Since

πr2 = s2 − πr2, we have s2 = 2πr2. Hence
B

A
=

(2r)2

s2
=

4r2

2πr2
=

2

π
.

I-5. Use Euler’s Formula: F − E + V = 2. We are given that F = 8 + 6 = 14. Each edge of the
polyhedron is formed by two sides of the polygons being adjacent, so E = 8·3+6·8

2
= 36. Thus

V = 2 + E − F = 2 + 36− 14 = 24.

10
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Alternate Solution: The statement of the problem implies that all polyhedra with 8 tri-
angular faces and 6 octagonal faces have the same number of vertices. Therefore, imagine
starting with a cube and cutting a small tetrahedron from each corner. Each of the six orig-
inal faces of the cube becomes an octagon, and there is a small triangle where each of the
eight corners of the cube were. The resulting polyhedron has 3 vertices where each of the 8
vertices of the cube used to be. The answer is 3 · 8 = 24.

I-6. Note that if the difference between the number of heads and the number of tails is never greater
than 1, then each even numbered toss must always be the opposite of the odd numbered toss
that precedes it. Hence the 50 tosses can be partitioned into 25 pairs that are one of HT
or TH. Thus there are 225 sequences of heads and tails in which the difference between the
number of heads and tails is never larger than 1. There are

(
50
25

)
ways to arrive at 25 heads

and 25 tails because any subset of the 50 flips can be the 25 heads. Therefore

p =
225(
50
25

) =
225

50·49·48·...·26
25·24·...·13·12·11·10·...·2·1

.

Note that every even term in 50 · 49 · 48 · · · · · 26 will cancel, leaving thirteen factors of 2 in the
numerator, thereby making the numerator of the fraction equal to 212. But from 12 · . . . · 1
we pick up 10 factors of 2 from the terms 12, 10, 8, 6, 4, and 2, giving 212+10 = 222 as the
numerator. The answer is 22.

Alternate Solution: Note that p = 225

(50
25)

. Because
(

50
25

)
= 50!

(25!)2
, it follows that

α = 25−
(
∞∑
i=1

õ
50

2i

û
− 2

∞∑
i=1

õ
25

2i

û)
= 25− (25 + 12 + 6 + 3 + 1) + 2(12 + 6 + 3 + 1)) = 22.

I-7. Sum the four equations and divide through by 4 to see that w+x+ y+ z = 1. Then subtract
that successively from each of the four equations to get w−x = 1, x− y = −1, y− z = 0, and
z − w = 0, from which it follows that y = z = w. Substitution into the first given equation
shows that y = z = w = 1

2
, and since w−x = 1, we have x = −1

2
. The answer is

(
1
2
,−1

2
, 1
2
, 1
2

)
.

I-8. Since
1

f(n)
=

1(
n
3

) =
3 · 2 · 1

(n− 2)(n− 1)n
=

3

n− 2
− 6

n− 1
+

3

n
we have

101∑
n=3

1

f(n)
=

Å
3

1
− 6

2
+

3

3

ã
+

Å
3

2
− 6

3
+

3

4

ã
+

Å
3

3
− 6

4
+

3

5

ã
+ · · ·+

Å
3

99
− 6

100
+

3

101

ã
.

Note that when all the terms with the same denominators are combined, the terms with
denominators 3, 4, . . . , 99 have numerators 3− 6 + 3 = 0, so the sum telescopes intoÅ

3

1
− 6

2

ã
+

3

2
+

3

100
+

Å
− 6

100
+

3

101

ã
=

3

2
− 3

100
+

3

101
=

15147

100 · 101
.
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The answer is 15147
10100

.

I-9. The stripes are blue for n < y < n+ 1 when n is odd. Since blog(x)c is odd when
10n ≤ x < 10n+1 for n odd, the desired intervals are 10 ≤ x < 102 and 103 ≤ x < 104 for a
total length of (100−10) + (10000−1000) = 9090.

I-10. By examining the lengths of the segments from the vertices to the points of tangency one
observes that sums of opposite sides of quadrilaterals with inscribed circles are equal. Thus
2AD = AD + BC = AB + CD = 8 + 18 = 26, so AD = BC = 13. Since AB ‖ CD and
BC = AD, the quadrilateral is an isosceles trapezoid. Let E be the foot of the altitude from
A to CD. Then DE = 1

2
(CD − AB) = 5, so AE =

√
AD2 −DE2 =

√
132 − 52 = 12. The

height of the trapezoid is the diameter of the circle, so r = 12
2

= 6.



Power Question 2011: Colorings

To Vertex-color a polygon or polyhedron means to assign colors to the vertices so that no edge joins
vertices of the same color. To Edge-color a polygon or polyhedron means to assign colors to the
edges so that no two edges of the same color meet at a vertex. To Face-color a polyhedron means
to assign colors to the faces so that no edge is adjacent to a pair of faces of the same color.

Example: In how many ways can the vertices of the pentagon ABCDE be Vertex-colored us-

ing at most six colors?

Discussion: We can choose the color for A in 6 ways, then for B use any of the 5 colors not
used for A, then for C use any of the 5 colors not used for B, then for D use any of the 5 colors
not used for C, but when we come to color E we don’t know whether we can use 4 or 5 colors
because the choice depends on whether D and A are the same or different colors. This method
yields the estimate that the number of colorings will be between 6 · 5 · 5 · 5 · 4 and 6 · 5 · 5 · 5 · 5; i.e.,
between 3000 and 3750. To get an accurate count of the number of Vertex-colorings, we can keep
track of whether or not each vertex is colored the same as the first vertex, as in the following solution.

Solution: Choose any of the 6 colors for A and then any of the 5 remaining colors for B.
If we choose C to be the same color as A, then D will have to be a color different from A, and
E must be one of the 4 colors not used for A or D. Consequently, in this case the product of the
number of ways to color A,B,C,D,E in that order will be 6 · 5 · 1 · 5 · 4 = 600.
If we choose C to be a color different from A (and also different from B), then there are two possibil-
ities for D: (1) D and A the same color; (2) D and A different colors. Thus, in the case that C and A
are different colors, the number of ways to color A,B,C,D,E is the sum 6·5·4·1·5+6·5·4·4·4 = 2520.
So the total number of ways to Vertex-color ABCDE will be 600 + 2520 = 3120.

P-1. Coloring Polygons with a Minimum Number of Colors

a. Compute the ordered quadruple (v3, v4, v5, v6) where vn is the smallest number of colors
that can be used to Vertex-color a polygon with n sides. [4 pts]

b. (i) Give a general rule or formula for vn, the smallest number of colors that can be used
to Vertex-color a polygon with n sides. (ii) Prove your answer. [3 pts]

c. Let vn be as above and en be the smallest number of colors that can be used to Edge-color
a polygon with n sides. (i) Compute en − vn. (ii) Prove your answer. [3 pts]

P-2. Coloring Cubes with a Minimum Number of Colors

a. (i) Compute the minimum number of colors needed to Vertex-color a cube. (ii) Explain
or illustrate this minimum Vertex-coloring. [4 pts]

b. (i) Compute the minimum number of colors needed to Edge-color a cube. (ii) Explain
or illustrate this minimum Edge-coloring. [3 pts]

13



14 Power Question 2011: Colorings

c. (i) Compute the minimum number of colors needed to Face-color a cube. (ii) Explain or
illustrate this minimum Face-coloring. [3 pts]

P-3. Coloring Pyramids with a Minimum Number of Colors
Let n ≥ 3. If A1A2 . . . An is a regular n-gon and B is a point on the line perpendicular to the
center of the n-gon not in the plane of the n-gon, then we will call the polyhedron with edges
those of the n-gon together with the segments AiB for all i, a “pyramid based on an n-gon.”

a. (i) Compute the minimum number of colors needed to Vertex-color a pyramid based on
an n-gon. (ii) Explain or illustrate this minimum Vertex-coloring. [3 pts]

b. (i) Compute the minimum number of colors needed to Edge-color a pyramid based on
an n-gon. (ii) Explain or illustrate this minimum Edge-coloring. [4 pts]

c. (i) Compute the minimum number of colors needed to Face-color a pyramid based on an
n-gon. (ii) Explain or illustrate this minimum Face-coloring. [3 pts]

P-4. Coloring Prisms with a Minimum Number of Colors
Let n ≥ 3. If A1A2 . . . An and B1B2 . . . Bn are congruent regular n-gons in parallel planes
oriented so the lines AiBi are perpendicular to the planes of the n-gons for all i, call the
polyhedron with edges those of the two n-gons together with the segments AiBi for all i a
“prism based on an n-gon.”

a. (i) Compute the minimum number of colors needed to Vertex-color a prism based on an
n-gon. (ii) Explain or illustrate this minimum Vertex-coloring. [3 pts]

b. (i) Compute the minimum number of colors needed to Edge-color a prism based on an
n-gon. (ii) Explain or illustrate this minimum Edge-coloring. [4 pts]

c. (i) Compute the minimum number of colors needed to Face-color a prism based on an
n-gon. (ii) Explain or illustrate this minimum Face-coloring. [3 pts]

P-5. Vertex-coloring with k colors
Let Fn(k) be a formula for the number of Vertex-colorings of a convex n-gon using at most k
colors. Express all of the polynomial answers either multiplied out in decreasing powers of k
or factored into linear factors and quadratic factors that have no real roots.

a. (i) Compute F3(k). (ii) Explain how you derived the formula. [2 pts]

b. (i) Compute F4(k). (ii) Explain how you derived the formula. [2 pts]

c. (i) Compute F5(k). (ii) Explain how you derived the formula. [2 pts]

d. (i) Compute the ordered pair of linear polynomials, (g(k), h(k)) so
Fn(k) = g(k)·Fn−1(k) + h(k)Fn−2(k) for all n ≥ 5. (ii) Explain why your formula is
correct. [2 pts]

e. (i) Compute P (k), the number of Vertex-colorings of a pyramid based on a pentagon.
(ii) Explain why your formula is correct. [2 pts]



Solutions to 2011 Power Question

P-1. a. The answer is (3, 2, 3, 2) .

b. (i) The answer is that vn equals 2 if n is even and 3 if n is odd. (ii) If n is even, then
the polygon P1P2 . . . Pn can be colored with two colors using one color of the vertices
with odd subscripts and that other for vertices with even subscripts. If n is odd, two
colors will not suffice because one of the colors would have to be used at least one more
time than the other resulting in adjacent vertices with the same color. However, three
colors will suffice. For example, for i = 1, 2, . . . , n − 1 color the Pi with odd subscripts
one color and those with even subscripts with a second color, and then color Pn with the
third color.

c. (i) 0 for all n (ii) A one-to-one correspondence between the colors of vertices and the
colors of edges can be established by traversing the polygon counterclockwise, with each
vertex the same color as the edge that follows it.

P-2. Let Face1 = A1B1C1D1 and Face2 = A2B2C2D2 be opposite faces of the cube with A1

connected to A2, B1 connected to B2, etc.

a. (i) 2 (ii) For Face1, use one color for A1 and C1 and the other for B1 and D1. For the
vertices on Face1, use the opposite color from the color used for the vertex on Face1 that
is connected to it. Alternatively, consider the unit cube in the first octant of (x, y, z)
with one vertex at the origin. Use one color for the vertices with coordinates whose sum
is even, and the other for those with an odd sum.

b. (i) 3 (ii) Since each vertex has three edges coming into it, the minimum number must
be at least 3. That 3 colors suffice is shown by this argument: Face1 can be Edge-colored
with two colors using one color for one pair of opposite edges and the other color for the
other pair of edges. Face2 can similarly be colored with those same two colors. Use the
third color for all of the edges joining Face1 and Face2.

c. (i) 3 (ii) Since any pair of adjacent faces has a face adjacent to each, the minimum
number must be at least 3. Three colors suffice because each of the three pairs of opposite
faces can be colored using a different one of the three colors.

P-3. a. (i) The minimum number of colors is 3 if n is even and 4 if n is odd. (ii) By problem 1,
for the vertices on the base of the pyramid, 2 colors are required if n is even and 3 if n
is odd. Since B is connected to each of the vertices on the base, it must be a different
color from all of the base vertices, thus increasing the minimum by 1.

b. (i) n (ii) Since n edges come together at B, the minimum number must be n. Each
edge on the base is adjacent to exactly 2 of the edges from B; and since those 2 edges
use 2 colors and n ≥ 3, there is an unused color for that can be used for that base edge.

c. (i) The minimum number of colors is 3 if n is even and 4 if n is odd. (ii) First consider
the faces adjacent to B: If n is even, then these can be colored with 2 colors by alternating
the colors for adjacent faces; and if n is odd, 2 colors will not suffice because one of the
colors would have to be used at least one more time than the other resulting the same

15
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color the same color for two adjacent faces but 3 colors will suffice for these faces by,
for example, for faces AiAi+1B for i = 1, 2, . . . , n−1 using one color when i is odd and
a second color when i is even, and then coloring face AnA1B with the third color. The
answer results since the color of the base must be one more than the color of any of the
other faces.

P-4. a. (i) The minimum number of colors is 2 if n is even and 3 if n is odd. (ii) As in question
P-1b, color the vertices of polygon A1A2 . . . An in 2 or 3 colors, depending on whether n
is even or odd. Then, make the following correspondences of colors, A1 ↔ B2, A2 ↔ B3,
. . . , An−1 ↔ Bn, An ↔ B1. Since the colors on the “B-face” are just those on the
“A-face” rotated by (360/n)◦, no AiBi edge will connect vertices of the same color.

b. (i) 3 (ii) Since each vertex has 3 edges adjoining it, no number smaller than 3 will
work. This shows that 3 colors suffice: If n is even, color the edges of the “A-face” with
two colors as in question P-1c, then color the edges on the “B-face” identically to the
“A-face”, and finally color each AiBi face with the third color. If n is odd, color the
edges of the “A-face” with three colors as in question P-1c, then color the edges of the
“B-face” identically to the “A-face”, and since there is the identical color combination
at the Ai−1AiAiai+1 vertex on the A-face as there is at the Bi−1BiBiBi+1 vertex on the
B-face, for edge AiBi use the color not used on either Ai−1Ai or AiAi+1.

c. (i) The minimum number of colors is 3 if n is even and 4 if n is odd. (ii) Any Edge-
coloring of A1A2 . . . An corresponds to a Face-coloring of all the AiBiBi+1Ai+1 faces, by
just imagining the color of each AiAi+1 edge ‘bleeding’ into the adjoining face and vice
versa, so we need 2 colors for the AiBiBi+1Ai+1 faces if n is even and 3 if n is odd. Since
the two faces A1A2 . . . An and B1B2 . . . Bn are adjacent to each of the AiBiBi+1Ai+1

faces, one additional color is needed for these ‘endcap’ faces.

P-5. a. (i) k3−3k2+2k = k(k − 1)(k − 2) (ii) F3(k) = k(k − 1)(k − 2) since each vertex must
be a different color in a triangle.

b. (i) k4−4k3+6k2−3k = k(k − 1)(k2 − 3k + 3) (ii) In a square ABCD, either A and C
are the same color or A and C are different colors. When A and C are the same color,
then there are k choices for that color and each of B and D can be one of k − 1 colors,
for a total of k(k − 1)2 = k3 − 2k2 + k colorings. When A and C are different colors,
then there are k choices for A, k − 1 for C, and k − 2 for each of B and D for a total
of k(k − 1)(k − 2)2 = k4 − 5k3 + 8k2 − 4k colorings. Therefore, the total number of
colorings for the square is (k3 − 2k2 + k) + (k4 − 5k3 + 8k2 − 4k) = k4 − 4k3 + 6k2 − 3k
or k(k − 1)2 + k(k − 1)(k − 2)2 = k(k − 1)[(k − 1) + (k2 − 4k + 4)].

Alternate Solution: Either 2 or 3 or 4 of the k colors can be used. If just 2 of the
k colors are used, both opposite pairs of vertices of the square must be the same color,
so there are k choices for the one pair and k− 1 choices for the second pair for a total of
k(k − 1) choices. If exactly 3 of the k colors are used, then one of the pairs of opposite
vertices of the square must be the same color and there are two choices for the pair so
there are 2k(k− 1)(k− 2) colorings in this case. If all 4 vertices are different colors, then
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there are k(k−1)(k−2)(k−3) colorings for this case. Thus the total number of colorings
is k(k−1)+2k(k−1)(k−2)+k(k−1)(k−2)(k−3) = k(k−1)[1+(2k−4)+(k2−5k+6)].

c. (i) k(k − 1)(k − 2)(k2 − 2k + 2) (ii) In ABCDE either (1) B and E are the same color
or (2) B and E are different colors and B and D are different colors or (3) B and E are
different colors and B and D are the same color. In case (1) there are k choices for B = E,
k−1 choices for A, and (k−1)(k−2) choices for C and D for a total k(k−1)2(k−2) color-
ings for this arrangement. In case (2) there are k choices for A, k−1 forB, k−2 for E, k−2
for D, and k−2 for C for a total of k(k−1)(k−2)3 colorings for this arrangement. In case
(3) there are k choices for A, k−1 choices for B, k−2 choices for B = D and k−1 choices
for c for a total of k(k−1)2(k−2) colorings for this arrangement. Totaling cases (1), (2),
and (3) we have 2k(k−1)2(k−2)+k(k−1)(k−2)3 = k(k−1)(k−2)[2(k−1)+(k2−4k+4)].

Alternate Solution: Either 3, 4, or 5 of the k colors can be used. If just 3 of the k
colors are used, then one color is used for just one of the 5 vertices and the other non-
adjacent vertices must be paired into vertices the same color, so there are 5k(k−1)(k−2)
colorings with just 3 colors. If exactly 4 of the k colors are used, then some pair of
vertices that could be joined by one of the 5 diagonals are the same color, so there
are 5k(k − 1)(k − 2)(k − 3) colorings in this case. If 5 of the k colors are used, then
there are k(k − 1)(k − 2)(k − 3)(k − 4) colorings in this case. Thus, there is a total of
k(k − 1)(k − 2)[5 + (5k − 15) + (k2 − 7k + 12)] colorings.

d. (i) (k−2, k−1) (ii) Let A = A1A2A3 . . . An be any convex n-gon. Either (1) A1 and A3

are different colors, or (2) A1 and A3 are the same color.
Case 1: Diagonal A1A3 could be inserted since A1 and A3 are different colors. The
(n−1)-vertex polygon A6= = A1A3A4 . . . An can be Vertex-colored in Fn−1(k) ways, and
A2 can be colored in any of the k − 2 colors not used by A1 or A3. Thus, there are
(k − 2)Fn−1(k) vertex-colorings of A with A1 and A3 different colors.
Case 2: Imagine coalescing vertices A1 and A3 into one vertex A∗ since they are
same color. There are Fn−2(k) vertex-colorings of the (n−2)-vertex polygon A= =
A∗A4A5 . . . An. For each of these Fn−2(k) vertex-colorings of A=, A2 can be colored
with one of the k − 1 colors not used for A1. Thus, there are (k − 1)Fn−2(k) vertex-
colorings of A with A1 and A3 the same color.
Consequently, Fn(k) = (k − 2)Fn−1(k) + (k − 1)Fn−2(k).
Note: A quick check to verify the algebra in parts P-5a, P-5b, and P-5c is to show that
(k − 2)F4(k) + (k − 1)F3(k) = F5(k).

e. (i) k(k − 1)(k − 2)(k − 3)(k2 − 4k + 5) (ii) It is easiest to work from the alternative
solution to P5-c: If 3 colors were used for the base pentagon, then a fourth color must
be used for the vertex, so there are (k− 3)[5k(k− 1)(k− 2)] colorings for the pyramid in
this case. If 4 colors were used for the base pentagon, then a fifth color must be used for
the vertex, so there are (k− 4)[5k(k− 1)(k− 2)(k− 3)] colorings for the pyramid in this
case. If 5 colors were used for the base pentagon, then a sixth color must be used for the
vertex, so there are (k − 5)[k(k − 1)(k − 2)(k − 3)(k − 4)] colorings for the pyramid in
this case. Thus, the total number of colorings for the pyramid is

k(k−1)(k−2)(k−3)[5 + (5k−20) + (k2−9k+ 20) = k(k−1)(k−2)(k−3)(k2−4k+ 5).



2011 Relay Problems

R1-1. The roots of 2x2 − 20x+ 48 = 0 are x = r and x = h where r > h. The volume of a cylinder
with height h and radius r is V = nπ. Compute n.

R1-2. Let N be the number you will receive. The perimeter of a rectangle is 300, and its length is
N . Compute the width of the rectangle.

R1-3. Let N be the number you will receive. Abe drives N miles per hour faster than Becky. They
both leave at noon and drive 360 miles. Abe arrives at 6:00pm. Compute the number of
minutes after Abe when Becky arrives.

R2-1. The line 2x + 3y = 72 intersects the y-axis and x-axis at points A and B, respectively. The
line 3x+ 2y = 300 intersects the x-axis and y-axis at points C and D, respectively. Compute
the area of ABCD.

R2-2. Let N be the number you will receive. Compute blog8(N)c.

R2-3. Let N be the number you will receive. The perimeter of 4ABC is 5N , the lengths of all of its
sides are positive integers, AB = BC, and AC is as small as possible. Compute the area of
4ABC.

18



2011 Relay Answers

R1-1. 144

R1-2. 6

R1-3. 40

R2-1. 7068

R2-2. 4

R2-3. 4
√

5

19
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R1-1. Since the roots are x = 4 and x = 6, we have r = 6 and h = 4. Thus V = πr2h = 144π and
n = 144.

R1-2. Since the perimeter of an L×W rectangle is P = 2L+2W , W = 1
2
(P−2L) = 1

2
(300−2·144) =

6.

R1-3. Since Abe drove 360 miles in 6 hours, Abe drove at 60 miles per hour, so Becky drove
at 60−N miles per hour. The number of hours it takes Becky to drive the 360 miles is

360
60−N = 360−6N+6N

60−N = 6 + 6N
60−N . We convert the fractional part of an hour to minutes:

60 · 6N
60−N = 360N

60−N = 360·6
60−6

= 360·6
9·6 = 40.

R2-1. Note that A = (0, 24), B = (36, 0), C = (100, 0), and D = (0, 150). Let O = (0, 0). Then
both 4AOB and 4COD are right triangles, and the area of ABCD is the difference between
their areas; namely, 1

2
(100)(150)− 1

2
(36)(24) = 7068.

R2-2. Since blog8(N)c = k if and only if 8k ≤ N < 8k+1, while awaiting the arrival of N we compute
82 = 64, 83 = 512, 84 = 4096, 85 = 32768, . . . . Since 84 < 7068 < 85, it follows that
blog8(N)c = 4.

R2-3. If 5N is odd, let 5N = 2k + 1, and then AB = BC = k and AC = 1 so the area will be
1
2
(1)
»
k2 −

(
1
2

)2
= 1

4

√
4k2 − 1. If 5N is even, let 5N = 2k + 2, and then AB = BC = k and

AC = 2 so the area will be 1
2
(2)
√

(k2 − 12) =
√
k2 − 1. Since 5N = 20 = 2(9) + 2, the area

is
√

92 − 1 = 4
√

5.
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2011 Tiebreaker Problems

TB-1. In 4ABC, ∠C is a right angle, AC = 6, and BC = 8. Point D is on AB such that CD
bisects AB. Circles C1 and C2 are drawn such that C1 is tangent to all three sides of 4BDC
and C2 is tangent to all three sides of 4ADC. Compute the sum of the areas of C1 and C2.

TB-2. Let blog11 nc be the largest integer less than or equal to log11 n. Compute

2011∑
n=1

blog11 nc.

21
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TB-1.
145π

36

TB-2. 4573
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TB-1. The area of a triangle can be expressed as A = rs, where r is the radius of the incircle and s is
the semiperimeter. So, for 4BDC, it follows that 12 = 9r1, so r1 = 4

3
. Similarly, for 4ADC,

it follows that 12 = 8r2, so r2 = 3
2
. The desired area is π

ÇÅ
4

3

ã2

+

Å
3

2

ã2
å

=
145π

36
.

TB-2. For 1 ≤ n ≤ 10, blog11 nc = 0.
For 11 ≤ n ≤ 120, blog11 nc = 1.
For 121 ≤ n ≤ 1330, blog11 nc = 2.
For 1331 ≤ n ≤ 2011, blog11 nc = 3.

Therefore,
2011∑
n=1

blog11 nc = 110 · 1 + 1210 · 2 + 681 · 3 = 4573.

23



24 2011 Tiebreaker Solutions



2012 Contest at Susquehanna Valley High
School (Southern Tier)

Contents
Team Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Individual Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . 32

Power Question and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Relay Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Tiebreaker Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . 46



2012 Team Problems

T-1. Xavier starts walking down a straight road at 3:00 PM, and walks at 3 miles per hour. Yolanda
starts walking down the same straight road at 4:00 PM, and she walks at 4 miles per hour.
Zachary begins walking down the same straight road at 5 miles per hour. If the three walkers
reach the same point at the same time, compute the time (PM) at which Zachary should
begin walking.

T-2. Call a positive integer “Two-Prime-Linked”, or TPL for short, if (a) all the digits are different
and (b) each pair of adjacent digits forms a two-digit prime. For example, 417 is a TPL integer
since 4, 1, 7 are all different and 41 and 17 are two-digit primes. Compute the smallest five-digit
TPL integer.

T-3. Compute the least positive integer n for which n and n + 1 are both the product of three
distinct prime factors.

T-4. ABC is an isosceles triangle with base BC. P , Q, and R are midpoints of the sides that
contain them. K is the intersection of the medians, as shown. If AR = BC = 12, compute
AC +KC.

 

A

B C

P
Q

R

K

T-5. Consider three sequences {an}, {bn}, and {cn}. Let an+1 = d
√
bncne, bn+1 = d√ancne, and

cn+1 = d
√
anbne, where dxe is the least integer equal to or greater than x. Given that a1 = 2,

b1 = 8, and c1 = 32, compute a10.

T-6. Suppose x2 + y2 = 68 and log2 x+ log2 y = 4. Compute |x+ y|.
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T-7. Dick’s stamp collection contains commemorative (C), definitive (D) and back-of-the-book (B)
stamps. In 2011, his collection contained 4242 face different U.S. stamps. At least two-thirds
of the stamps were commemorative and the ratio of the definitive to the back-of-the-book was
4 : 1. Since then he has added 6 definitive and 42 back-of-the-book stamps and many more
commemorative stamps to his collection and the C : D : B ratio is now exactly 20 : 7 : 2.
Compute the number of stamps in his collection.

T-8. Call an integer a 012-integer if it can be written using only the digits 0, 1, and 2, and it uses
each of these digits at least once. Compute the number of 012-integers in {1, 2, · · · , 999999}.
Examples: The smallest 012-integer is 102, the largest in this set is 222210, and this year,
2012, is another example of a 012-integer.

T-9. Let ABCDE be a regular pentagon inscribed in a circle of radius R. P is the midpoint of
CD. Q is the reflection of A across BE. Compute PQ in terms of R.

P

Q

DC

B E

A
 

T-10. The faces of a polyhedron P consist of 8 equilateral triangles and 6 regular octagons. The
volume of P is 189 + 126

√
2. Compute the total surface area of P .



2012 Team Answers

T-1. 4:36 PM

T-2. 23179

T-3. 230

T-4. 6
√

5 + 2
√

13

T-5. 10

T-6. 10

T-7. 4698

T-8. 488

T-9. R
Ä

3
√

5−5
4

ä
T-10. 108 + 108

√
2 + 18

√
3
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2012 Team Solutions

T-1. We take advantage of the fact that distance is the product of rate and time. We need Xavier’s
distance to equal Yolanda’s distance, so 3(t+ 1) = 4t, which means the trip takes Yolanda 3
hours and the distance is 3 · 4 = 12 miles. If the trip takes Yolanda 3 hours, the trio meet at
7:00 PM. Thus, Zachary will take the trip in 12

5
= 2.4 hours, which is 2 hours and 24 minutes.

He therefore has to begin at 4:36 PM.

T-2. Every two-digit prime ends in 1, 3, 7, or 9, so all but the first digit must be chosen from these
four. Listing these end-digits in increasing order 1379 yields the two-digit primes 13, 37, and
79. However, since 21 is not prime, 41379 is the smallest five-digit TPL integer attainable
with the end-digits in increasing order. Listing the end-digits in the order 3179 for the next-
smallest value of the last four digits yields the two-digit primes 31, 17, and 79. Furthermore
23 is also a two-digit prime. Thus, 23179 is the smallest five-digit TPL integer.

T-3. Because any multiple of 4 would not have distinct prime factors, either n or n + 1 must be
congruent to 2 (modulo 4). With that in mind, consider the odd number abc and check the
even neighbor that isn’t a multiple of 4. So, 3 ·5 ·7 = 105, but 106 = 2 ·53; and 3 ·5 ·11 = 165,
but 166 = 2·83; and 3·5·13 = 195, but 194 = 2·97. However, 3·7·11 = 231 and 230 = 2·5·23.
Thus, our answer is 230. (Just to be sure, verify that 3 · 5 · 17 > 231.)

T-4. In right 4ARC, AC2 = 122 + 62 = 180, so AC = 6
√

5. Since medians intersect at a common
point (the centroid) that divides each median into a 2 : 1 ratio, KR = 4. In right 4KRC,
KC2 = 42 + 62 = 52, so KC = 2

√
13. Thus, AC +KC = 6

√
5 + 2

√
13.

T-5. Keep in mind the symmetry of the elements for any value of n. Also keep in mind the
following: d

√
x(x+ 1)e = x + 1 and d

√
x(x+ 2)e = x + 1. Let Dn represent the ordered

triple (an, bn, cn). So, D1 = (2, 8, 32), D2 = (16, 8, 4), D3 = (6, 8, 12), D4 = (10, 9, 7), and
D5 = (8, 9, 10). From here, all values quickly converge to 10.

T-6. The second equation can be rewritten as log x
log 2

+ log y
log 2

= 4. This means that log x + log y =

4 log 2 = log 16. Using the Product Property of Logs, we know that log(x · y) = log 16, and
thus xy = 16. Now, combine that with the first equation in the following way. We know that
x2 + 2xy + y2 = 68 + 2 · 16 = 100, so (x+ y)2 = 100, and |x+ y| =

√
100 = 10.
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T-7. At least 2828 stamps are commemorative, leaving 1414 to be divided into two parts in a 4 : 1
ratio. 1414 is not divisible by 5. Thus, more stamps must have been commemorative. Some
possibilities are: 2832 → 1410(1128, 282), 2837 → 1405(1124, 281), 2842 → 1400(1120, 280).
In general, (D,B) = (1128 − 4t, 282 − t). Now 1128−4t+6

282−t+42
= 7

2
→ 1134−4t

324−t = 7
2
, so 2268 −

8t = 2268 − 7t, and thus t = 0. Thus, in 2011, (C,D,B) = (2832, 1128, 282). Currently,
2832+x

1134
= 20

7
→ 7x = 20 · 1134− 7 · 2832, so x = 20 · 162− 2832 = 3240 − 2832 = 408. Thus,

the collection now contains 4242 + 408 + 6 + 42 = 4698 stamps.

T-8. Let f(n) be the number of n-digit 012-integers. Note that f(1) = f(2) = 0, so we need
to compute f(3) + f(4) + f(5) + f(6). If x is an n-digit 012-integer, then the most sig-
nificant digit of x is 1 or 2 and remaining n − 1 digits of x form a sequence of n − 1 of
the three digits {0, 1, 2} which may contain the most significant digit and must contain at
least one of each of the other two digits. By the Inclusion-Exclusion Principle, there are
3n−1− 2·2n−1 + 1 choices for these remaining n− 1 digits. Therefore, f(n) = 2(3n−1− 2n + 1).
Consequently, f(3)+f(4)+f(5)+f(6) = 2[(32−23+1)+(33−24+1)+(34−25+1)+(35−26+1),

or 2[(32+33+34+35)− (23+24+25+26) + (4)] = 2
î

36−32

3−1
− 27−23

2−1
+ 4
ó

= 488.

Alternate Solution: First note that f(3) = 4 because of {102, 120, 201, 210}. For n > 3,
let x be an n-digit 012-integer. Either x’s leftmost n− 1 digits form a 012-integer and there
are three choices for the units digit, or x’s most significant digit is one of two choices and the
next n − 2 digits form a non-constant sequence with a range of two digits (the most signif-
icant digit and one of the other two choices) and the units digit is the digit not used in the
sequence. Consequently, f(n) = 3f(n−1) + 2·2·(2n−2 − 1)·1 = 3f(n−1) + 4(2n−2 − 1). Thus
f(4) = 3(4) + 4(3) = 24, and f(5) = 3(24) + 4(7) = 100, and f(6) = 3(100) + 4(15) = 360, so
f(3) + f(4) + f(5) + f(6) = 4 + 24 + 100 + 360 = 488.

This problem was originally written by Dr. Leo J. Schneider, who wrote NYSML contests
from 2001 until his death in 2010. We include this problem to honor his memory.

T-9. Let (2x) denote the sides of ABCDE. Let S denote the center of the circumscribed circle. In
4PCS, SP = R cos 36◦ and x = R sin 36◦. AP = AS+SP = R+R cos 36◦ = R(1 + cos 36◦).

Since 36◦ is a special angle, we know cos 36◦ =
√

5+1
4

. Substituting, AP = R
Ä
1 +

√
5+1
4

ä
=

R
Ä√

5+5
4

ä
. In isosceles 4ABQ, m∠BAQ = 54◦ which forces m∠ABQ = 72◦. Dropping a

perpendicular from B to M , the midpoint of AQ, creates a 36◦ − 54◦ − 90◦ right 4ABM .
Thus, we have AQ = 4x sin 36◦ = 4R sin2 36◦. Knowing cos 36◦, we can determine an exact

value for sin2 36◦: sin2 36◦ = 1 − cos2 36◦, which is 1 −
Ä√

5+1
4

ä2
= 16−(5+2

√
5+1)

16
= 10−2

√
5

16
.

Finally, PQ = AP −AQ = R
Ä√

5+5
4

ä
− 4R

Ä
10−2

√
5

16

ä
, which simplifies to R

Ä√
5+5−(10−2

√
5)

4

ä
=

R
Ä
3
√
5−5
4

ä
.
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T-10. The number of vertices of P is V = E − F + 2 = 8·3+6·8
2
− 14 + 2 = 24 by Euler’s Formula.

Since each interior angle of each octagon measures 135◦ and 3 · 135 > 360, it follows that
the corners of at most two octagons come together at each vertex of P . But, since there are
6 · 8 = 48 corners on the octagons and only 24 vertices, we must have two corners of octagons
come together at each vertex of P . Furthermore, since there must be at least three corners
of polygons at each of the 24 vertices of P and the total number of corners on the triangles
is 3 · 8 = 24, each vertex of P is formed by the corners of two octagons and one equilateral
triangle. It follows that, the faces adjacent to the octagon and around the edges of the octagon
must alternate between the triangles and octagons. Thus, P can be formed by starting with
a cube and removing, at each vertex of the cube, a tetrahedron with an equilateral triangle
as a base and three isosceles right triangles coming together its vertex. The length s of the
side of each equilateral triangle must equal the remaining length of the part of each edge of
the cube that remains after the tetrahedrons are removed, thus forming the regular octagons.

Each octagonal face of P consists of an s ×
Ä
s+ s

√
2
ä

rectangle and two trapezoids with

altitudes s
√

2 and bases of lengths s and s+ s
√

2. Therefore the total surface area of P is

6

Ç
s
Ä
s+ s

√
2
ä

+ 2
s
√

2

2

Ç
2s+

s
√

2

2

åå
+ 8

Ç
s2
√

3

4

å
=
Ä
12 + 12

√
2 + 2

√
3
ä
s2.

Let h be the length of the altitude of each tetrahedron. Then h2 +
Ä

2
3

Ä
s
√

3
2

ää2
=
Ä

2s√
2

ä2
so

h =
√

s
6
. The edge-length of the cube was s+ s

√
2. The volume of P isÄ

s+ s
√

2
ä3 − 8

Ç
1

3

Ç
s2
√

3

4

åÅ
s√
6

ãå
=

Ç
7 +

14
√

2

3

å
s3 = 189 + 126

√
2

so s = 3 and the total surface area of P is 9
Ä
12 + 12

√
2 + 2

√
3
ä

= 108 + 108
√

2 + 18
√

3.



2012 Individual Problems

I-1. For all real values of x, compute the minimum value of |x+ 2|+ |x− 5|.

I-2. For some integer x > 13, the sum of the first and third (lower and upper) quartiles scores,
the median, and the mean of the set of numbers {1, 1, 2, 3, 5, 8, 13, x} is 34. Compute x.

I-3. Given a sequence {an} where a0 = 2, a1 = 0, a2 = 1, a3 = 2, and for all n ≥ 4, an =
2an−1 − 0an−2 + 1an−3 − 2an−4. Compute a2012.

I-4. Trapezoid ABCD is circumscribed about a circle. AB ‖ CD, AD = BC = 40. The radius of
the circle is 15. Compute the area of ABCD.

 

A B

C
D

I-5. Let

Ç
n

r

å
denote the number of ways to choose r objects from a group of n objects. Given

that

Ç
n

3

åÇ
n

2

å = 10, compute n.

I-6. Triangle JET has vertices at J(2, 10), E(2, 2), and T (8, 2). The circumcircle of 4JET passes
through each of the vertices of 4JET . The incircle of 4JET is internally tangent to each
side of 4JET . Compute the area in between the circumcircle and the incircle.

I-7. Compute log(864)

Ä
468
ä
. Recall that ab

c
= a(bc).

I-8. The graph of (x2 +y2−2(3x+4y))(y+2−|x−2|) = 0 partitions the plane into 6 regions whose
areas are A1, A2, · · · , A6 named so 0 < A1 < A2 < A3 < A4 < A5 = A6 = ∞. Compute A3.
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I-9. In hexagon ABCDEF , 5 of the angles each measure 135◦ and 4 of the sides each measure√
2. Compute the area of ABCDEF .

I-10. Compute the number of distinct positive integer factors of 216 − 1.



2012 Individual Answers

I-1. 7

I-2. 111

I-3. 1

I-4. 1200

I-5. 32

I-6. 21π

I-7. 864

I-8.
25π

4
− 25

2

I-9. 6 + 5
√

2

I-10. 16
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I-1. Consider three points A, B, and C on the number line with coordinates −2, 5, and x respec-
tively. The given expression represents the sum of the distances from x to −2 and x to 5.
If C is between A and B (or C = A or C = B), then AC + CB = AB = 5 − (−2) = 7.
If C is to the left of −2, then CA + AB = CA + 7 > 7. If C is to the right of 5, then
CB + AB = CB + 7 > 7. Our minimum is 7.

I-2. Let µ be the mean, Q1 and Q3 be the first and third quartile scores, and M be the median.
Then

34 = Q1 +M +Q3 +µ =
1 + 2

2
+

3 + 5

2
+

8 + 13

2
+

1 + 1 + 2 + 3 + 5 + 8 + 13 + x

8
=

161 + x

8

so 161 + x = 272 and x = 111.

I-3. We see that a4 = 2(2) − 0(1) + 1(0) − 2(2) = 0, a5 = 2(0) − 0(2) + 1(1) − 2(0) = 1,
a6 = 2(1) − 0(0) + 1(2) − 2(1) = 2, a7 = 2(2) − 0(1) + 1(0) − 2(2) = a4 = 0, and so on. By
extension, ak+3 = ak, k ≥ 0, and a2012 = a2009 = · · · = a3 = 1.

I-4. Consider the diagram.

 

A B

C
D

x

x x

x

40 - x

40 - x40 - x

40 - x

30

Notice that AB + CD = 2x + 2(40 − x) = 2x + 80 − 2x = 80. So the area of ABCD is
1
2
h(AB + CD) = 1

2
· 30 · 80 = 1200.

I-5. The equation may be rewritten as

n(n− 1)(n− 2)

3 · 2 · 1
n(n− 1)

2 · 1

= n−2
3

= 10, so n = 32.
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I-6. Since 4JET is a right triangle, its circumcenter is at the midpoint of the hypotenuse (think:
it’s where the perpendicular bisectors of the sides come together). So the circumcircle is
centered at (5, 6) and the circumradius is

√
(5− 2)2 + (6− 10)2 = 5. The inradius can be

found without knowing where the incenter is, with the help of the formula for the area of a
triangle A = r · s, where r is the inradius and s is the semiperimeter of the triangle. We know
the area of the triangle is 1

2
· 6 · 8 = 24, so we solve 24 = r · 12 to obtain r = 2. The area

between the two circles is 52 · π − 22 · π =21π.

I-7. Recall that exponentiation is right-associative. log(864)

Ä
468
ä

=
logn
Ä
468
ä

logn (864)
=

68 logn 4

64 logn 8
. This

simplifies to 64 log8 4 = 1296 · 2
3

= 864.

I-8. Since a product is zero if and only if one of its factors is zero, the curves parts of which bound
the regions are the circle (x − 3)2 + (y − 4)2 = 25 with center (3, 4) and radius 5 and the
‘big V ’ y = |x − 2| − 2 with vertex at (2,−2) and the rays y = x − 4 when x ≥ 2 and
y = −x when x ≤ 2 as arms. A quick sketch shows that the region with area A3 is bounded
by a segment of y = x − 4 and the circle. Solving (x − 3)2 + (y − 4)2 = 25 and y = x − 4
simultaneously yields the intersection points (3,−1) and (8, 4). Thus A3 equals 1/4 the area of
a circle of radius 5 minus the area of an isosceles right triangle, so A3 = 1

4
π52− 1

2
52 =25π

4
− 25

2
.

This problem was originally written by Dr. Leo J. Schneider, who wrote NYSML contests
from 2001 until his death in 2010. We include this problem to honor his memory.

I-9. The sixth angle must measure 4(180)− 5(135) = 45◦. The sides of that angle must be longer
than the other 4 sides in order to accommodate the obtuse angles, so those other 4 sides must
each measure

√
2. This gives the following diagram (with partitions into simple areas).

 

Our area is 1
2
(2 +

√
2)2 +

√
2 · (2 +

√
2) + 2 · 1

2
· 12 + 1 ·

√
2, or 6 + 5

√
2.
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I-10. We factor 216 − 1 as a difference of two squares: (28 − 1)(28 + 1). Since the second factor is
one more than 2 to a power of 2, it is prime (look it up!). So we continue to factor the other
factor. 216− 1 = (28− 1)(28 + 1) = (24− 1)(24 + 1)(28 + 1) = (22− 1)(22 + 1)(24 + 1)(28 + 1).
Since each of these four primes may or may not be in a particular factor of 216−1, the number
of factors is therefore 2 · 2 · 2 · 2 = 16.



Power Question 2012: Taxicab Geometry

In the ordinary Cartesian plane, <2, the Euclidean distance between points P (x1, y1) and Q(x2, y2),
written d(P,Q), is d(P,Q) =

√
(x1 − x2)2 + (y1 − y2)2.

In Taxicab geometry, the axes and coordinates are the same as in <2, but Taxi distance is measured
differently. In Taxicab geometry d(P,Q) is defined d(P,Q) = |x1 − x2|+ |y1 − y2|.

It is defined this way because in a city with only north-south and east-west roads, it gives the
distance a cab would have to drive to get from P to Q, as indicated in the diagram. We will refer
to distance in <2 as Euclidean and write dE(P,Q). Taxi distance will be written as dT (P,Q).

A circle with center C and radius r > 0 in Euclidean geometry is defined as the set of points
P in the plane whose distance from C is r. If C = (x0, y0) and P = (x, y), the equation of the
circle can be expressed as dE(P,C) = r, or

√
(x− x0)2 + (y − y0)2 = r, which is usually written

as (x − x0)2 + (y − y0)2 = r2. We define a Taxi circle with center C and radius r as the set of
points P in the plane such that dT (P,C) = r, leading to the equation |x − x0| + |y − y0| = r. For
notational purposes we will write CE(p, q, r) for the Euclidean circle with center (p, q) and radius
r, and CT (p, q, r) for the Taxi circle with the same center and radius.

P-1. a. Sketch the Taxi circle with center (0, 0) and radius 3. [3 pts]

b. Write the equation of the Taxi circle with center (3, 3) and radius 5, and determine its
perimeter. [3 pts]

P-2. Given three distinct collinear points in the plane, there is no Euclidean circle passing through
all three. Consider the collinear points A(0, 6), B(3, 3), and C(6, 0). Show by means of a
diagram that there is an infinite number of Taxi circles containing A, B, and C. Then show
algebraically or analytically that there is an infinite number of Taxi circles containing A, B,
and C. [6 pts]

P-3. Let P , Q, and R be three distinct points on a non-vertical line. Suppose the slope of the line
is not 1 or −1. Prove there is no Taxi circle passing through all three points. [5 pts]

P-4. a. In Taxicab geometry, draw a graph of the set of points equidistant from O(0, 0) and
N(6, 4). [3 pts]

b. There is a Taxi circle CT (p, q, r) passing through the pointsX(1, 2), Y (6, 5), and Z(5,−2).
Compute the ordered triple (p, q, r). [3 pts]
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P-5. Given any three non-collinear points, there is exactly one Euclidean circle passing through
all three points. Give an example, with proof, of three non-collinear points in the plane for
which there is no Taxi circle passing through all three of them. [4 pts]

P-6. Given any three non-collinear points, there is exactly one Euclidean circle passing through
all three points. Give an example, with proof, of three non-collinear points in the plane for
which there is an infinite number of Taxi circle passing through all three of them. Your
proof may be diagrammatic or algebraic. [4 pts]

Let CE(O, r) be a Euclidean circle. The inversion of the point P in the circle C is the point P ′ on

the ray
−→
OP such that dE(O,P )× dE(O,P ′) = r2. Inversion in CT (O, r) is defined similarly, but so

that dT (O,P )× dT (O,P ′) = r2. See the accompanying diagrams.

The rest of the questions will involve inverting in the unit Taxi circle, CT (0, 0, 1). Note that the
origin is not in the domain or range of the inversion.

P-7. Compute the coordinates of P ′ under inversion in the unit Taxi circle, if P is the point with
coordinates (0.1, 0.2). [3 pts]

P-8. Under inversion in the unit circle, notice that since P and P ′ are on the same ray through
the origin, for P (x, y), P ′ = (λx, λy) for some λ > 0. Show that λ = 1

(|x|+|y|)2 . That is, under

inversion in the unit circle, P (x, y)→ P ′
Ä

x
(|x|+|y|)2 ,

y
(|x|+|y|)2

ä
. [4 pts]

P-9. Show that under inversion in the unit Taxi circle, the image of CT (0, 0, r) is CT (0, 0, 1
r
) for all

r > 0. [4 pts]

P-10. Show that for any point P , under inversion in the unit Taxi circle, P ′′ = P . [3 pts]

P-11. Consider the Euclidean parabola y = x2, x > 0. The curve may be expressed parametrically
as P (t) = (t, t2), t > 0. Prove that when the parabola is inverted in the unit Taxi circle, there
are points P ′ that are arbitrarily close to the origin and points P ′ that are arbitrarily far from
the origin. [5 pts]



Solutions to 2012 Power Question

P-1. a. By definition, we know |α| = α if α ≥ 0 and |α| = −α if α < 0. So, for points in the
first quadrant, |x|+ |y| = 3 becomes x+ y = 3, and there are similar results in the other
quadrants. The resulting picture looks like the diagram below.

A Taxi circle is thus a Euclidean square whose sides have slopes ±1. Henceforth, we will
speak of the sides of the circle to refer to the sides of the Euclidean square.

b. The equation of the Taxi circle centered at (h, k) of Taxi radius r is |x−h|+ |y− k| = r,
so our answer is |x− 3|+ |y − 3| = 5. Its perimeter is the sum of the lengths of four
sides, each of length 5

√
2, so the perimeter is 20

√
2.

P-2. The diagram can take many forms. For example, take (6, 0) as the bottom corner and extend
the segment through (6, 0) and (0, 6) as far as desired. Use this segment to construct the
square. This can be done in infinitely many ways.

P-3. Note that if any two of the points were on the same side of the circle, the slope between them
would be ±1, contrary to hypothesis. Therefore, the points must be on three sides of the
circle. But no line can intersect three sides of a square, and we have a proof by contradiction.

P-4. a. The set of points is the union of three sets of points: the lattice points on the line
segment connecting (1, 4) and (5, 0), the lattice points on the ray x = 1 above (1, 4), and
the lattice points on the ray x = 5 below (5, 0).

b. (5,4,4) Using (1, 2) and (5,−2) as ”corners” draw the line through (6, 5) with slope

−1. The square formed has (4, 6) and (8, 2) as the other corners. The center of the
square is (5, 4) and the radius of the Taxi circle is 4.
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P-5. Consider the points (for example) (0, 1), (2, 2), and (2, 0). The three points do not lie on any
Taxi circle. Every point on a Taxi circle lies on a segment with slope ±1. Drawing a sketch
of the six lines with those slopes that pass through the three points, one can see that no Taxi
circle can be constructed through the three points.

P-6. Answers will vary, as will the explanations.

P-7. (1/9,2/9) Since P ′ lies on the ray through the origin passing through (0.1, 0.2), it must

have coordinates (0.1λ, 0.2λ) for some λ. Then OP = 0.1 + 0.2 = 0.3 and OP ′ = 0.3λ.
OP ×OP ′ = 12 = 1→ λ = 1/0.9, so P ′ has coordinates (1/9,2/9).

P-8. As in the analysis for Question P-7, OP = |x|+|y|, and OP ′ = λ(|x|+|y|). Then OP×OP ′ =
1→ λ = 1

(|x|+|y|)2 .

P-9. Let P (X, Y ) be on CT (0, 0, r). Then |x| + |y| = r, so P ′ has coordinates (x/r2, y/r2), so
OP ′ = r/r2 = 1/r, so P ′ is on the circle CT (0, 0, r).

P-10. This follows from the fact that 1
1/r

= r. We leave the details to the reader to fill in.

P-11. We have P (t, t2)→ OP = t+ t2, and OP ′ = 1
t+t2

. By choosing small t, t+ t2 can be made as

small as desired, so that OP ′ = 1
t+t2

can be made as large as desired. Thus, there are points
P ′ arbitrarily far from the origin. By choosing large t, t+ t2 can be made as large as desired,
so that OP ′ = 1

t+t2
can be made as small as desired. Thus, there are points P ′ arbitrarily close

to the origin. More formally, let ε > 0 be chosen. Since ε is supposed to be small, assume
ε < 2, so that ε/2 < 1 and (ε/2)2 < ε/2. Thus, if t < ε/2, t2 + t = (ε/2)2 +ε/2 < ε/2+ε/2 = ε.
This shows that t+ t2 can be made smaller than any desired quantity ε. Now let M be chosen.
If t >

√
M , t2 + t > M +

√
M > M . This shows that t2 + t can be made as large as desired,

which implies 1
t2+t

can be made as small as desired.



2012 Relay Problems

R1-1. Compute the sum: 1+2+3+4+6+8+7+10+13+10+14+18+13+18+23+16+22+28.

R1-2. Let N be the number you will receive. In a garden are three-leaf clovers and four-leaf clovers.
There are 16 fewer four-leaf clovers than three-leaf clovers. The total number of leaves is N .
Compute the number of four-leaf clovers in the garden.

R1-3. Let N be the number you will receive. Parallelogram MATH has vertices M(2, 4) and A(5, 8).
T could be at any point on the line y = N except the point (k,N). Compute k.
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R2-1. Pi Day was last celebrated on 03/14/2012. Compute the next year in which, if the date is
written 03/14/Y Y Y Y , Pi Day will be celebrated in a year that is divisible by 7 and the sum
of all eight digits is divisible by 7.

R2-2. Let N be the number you will receive. Let L be the sum of the tens and units digits of N . Let
W be the two-digit integer formed by the leftmost two digits of N . Each layer of my birthday
cake is 1 inch thick. Each layer is 2 inches wider than the layer immediately above it. Each
layer is centered on the layer below it. A single candle is centered on the top layer as shown
in the diagram (for a 4-layer cake). If the cake has L layers and the bottom layer is W inches
wide, the candle is T inches tall. Compute T .

 

March 14, 19xx

Birthday

Happy

George

R2-3. Let N be the number you will receive. An arithmetic progression has 4 terms, the first term is
N . If the sum of these four terms is 314, compute the last (i.e. fourth) term in the arithmetic
progression.



2012 Relay Answers

R1-1. 216

R1-2. 24

R1-3. 17

R2-1. 2121

R2-2. 8.5

R2-3. 148.5
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2012 Relay Solutions

R1-1. This is the merging of three arithmetic series: 1 + 4 + 7 + 10 + 13 + 16 = 6
2
(1 + 16) = 51,

2 + 6 + 10 + 14 + 18 + 22 = 6
2
(2 + 22) = 72, and 3 + 8 + 13 + 18 + 23 + 28 = 6

2
(3 + 28) = 93,

so our desired sum is 51 + 72 + 93 = 216.

R1-2. Let the problem situation be modelled by the system 3t + 4f = N and t = f + 16. By
substitution, we have 3(f + 16) + 4f = N , or f = N−48

7
. Since N = 216, we have f = 24.

There are 40 three-leaf clovers and 24 four-leaf clovers.

R1-3. M , A, and T must be non-collinear. Thus, we solve 8−4
5−2

= N−4
k−2

, so 4
3

= N−4
k−2

, which simplifies

to 4k − 8 = 3N − 12→ k = 3N−4
4

. Substituting N = 24, we have k = 17.

R2-1. Let ABCD denote the year. Then: 8+(A+B+C+D) = 7k and k must be at least 2. Thus,
(A+B+C +D) > 6 and for the next few years, (A,B) = (2, 0), so we start with C +D = 4.
We examine 2013, 2022, 2031 and 2040. All these satisfy the sum of the digits requirement,
but fail the divisibility by 7 test. So we, try (A,B) = (2, 1), C + D = 3. Testing 2103, 2112,
2121, 2130, we quickly realize 2121 is the next year.

R2-2. The indent as we add layers to the cake is 1 unit over and 1 unit up, forming isosceles triangles
on the left and right sides. In fact, the big triangle is isosceles (45◦−45◦−90◦) and the distance
from vertex to base is T , the height of the candle, plus L, the number of layers. Therefore,
2(T + L) = W + 2 and T = W+2−2L

2
= 1−N + W

2
. Waiting, N = 3, W = 21→ T = 8.5.

R2-3. Let a by the first term of the progression and d be the common difference. Then the 4 terms
are a, a+ d, a+ 2d and a+ 3d, so 4a+ 6d = 314, d = 314−4a

6
= 52 + 1−2a

3
and the fourth term

in the arithmetic progression is a+ 3d = a+ [3(52) + (1− 2a)/3] = 157− a. Waiting, a = 8.5,
so our answer is 148.5.
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2012 Tiebreaker Problems

TB-1. Consider a deck with 2012 numbered cards, each containing exactly one integer from 1 to
2012. The cards are dealt in the following way: the top card is dealt onto a table, then the
next card is put on the bottom of the pile in the dealer’s hand, then the next card is dealt on
the table, then the next card is put on the bottom of the pile, and so on, alternating between
dealing a card on the table and putting the next one on the bottom of the pile. Suppose that,
before the dealing begins, the cards are arranged in the deck so that the cards that are dealt
on the table will land in the order 1, 2, 3, ..., 2012. To do this, the first three cards in the deck
must have 1, 1007, 2. Compute the number on the card that would have to be in the 2000th
position.

TB-2. Right triangle BOX, with vertices B(20, 12), O(0, 0), and X(20, 0), is reflected in its hy-
potenuse. If point Y is the image of point X, compute the slope of line segment OY .
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2012 Tiebreaker Answers

TB-1. 1886

TB-2.
15

8
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2012 Tiebreaker Solutions

TB-1. We imagine a deck numbered 1 through 2012, deal it in the described way, and look for where
the card 2000 finishes up. The position in which the card 2000 finishes will tell us which card
should be in the 2000th position.
We see that the first 1006 cards would be 1, 3, 5, 7, ..., 2011. Then the next 503 cards are
2, 6, 10, ..., 2010. The next 252 cards are 4, 12, 20, 28, ..., 2012. Note here that the next card
in the deck is 8, and that goes below the deck, so the next 125 cards are 16, 32, 48, ..., 2000.
Thus, we want to put card number 1006 + 503 + 252 + 125 = 1886 in the 2000th position.

TB-2. If acute angle BOX is called θ, then the desired slope is equal to tan 2θ. We use the formula

tan 2θ =
2 tan θ

1− tan2 θ
=

2(3
5
)

1−
(

3
5

)2 = 15
8

.
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2013 Team Problems

T-1. Call the number 2013 a 0123-number because it is formed using only the digits 0, 1, 2, and 3,
and each of these digits is used at least once. Let G be the greatest 0123-number that is less
than 2013, and let L be the least 0123-number that is greater than 2013. Compute G + L.

T-2. A pyramid has its vertex at the center of the face of a cube and its base coincides with the
opposite face of the cube. If the volume of the region inside the cube but outside the pyramid
is 1152 cubic units, compute the edge of the cube.

T-3. Consider the set of “Pythagorean” ordered triples (a, b, c) where a ≤ b ≤ c and a2 + b2 = c2

for integers a, b, and c. Compute the number of Pythagorean ordered triples that have the
number 130 as either a or b or c.

T-4. The base-ten decimal expression of 2013! has many zeroes, N of which come consecutively as
a string at the end of the numeral. Compute N .

T-5. The volume of a right circular cylinder is kπ cubic units, where k > 1. The sum of the areas
of its bases exceeds its lateral surface area by kπ square units. Compute all possible integer
values of k.

T-6. Let f(p) be the number of digits in a minimum cycle in the decimal expansion of the prime
1/p for any prime p 6= 2, 5. That is, if n = f(p), then n is the smallest integer such that
1
p

= 0.a1a2 . . . an. Compute the smallest n for which there is more than one prime p for which

f(p) = n.

T-7. Given 4ABC with D on AB and E on AC such that CD bisects ∠ACB and BE bisects
∠ABC. If AD = 3, AE = 4, and EC = 8, compute BC.
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2013 Team Problems 51

T-8. Suppose that the 100 United States Senators have decided to play musical chairs in the
following way. 100 chairs are lined in a row in the hall outside the Senate chamber. The
senators line up in alphabetical order and march around the chairs until the music stops. The
first time the music stops, the senator at the beginning of the line sits down in any chair he or
she chooses. As soon as the first senator is seated, the music resumes and so does the march
of senators.
Every time the music stops, two rules are followed: (1) The senator at the head of the marching
line sits down in a seat of his or her choosing and (2) If there is a senator in either of the seats
adjacent to the senator who just sat down, this “neighbor” stands and moves to the end of
the line of marching senators. Only one “neighbor” must stand up if there are two “neighbors”
for a just-seated senator.
If this process continues indefinitely, compute the maximum number of senators that could
be sitting at a moment when the music starts.

T-9. The polar coordinates of points N , Y , and S are N(4, 140◦), Y (6
√

2, 50◦), and S(3, 20◦).
Compute the area of triangle NY S. Note: If a point P has polar coordinates (r, θ), then P is
r units from the origin O, and ray OP makes an angle of θ with the positive x-axis.

T-10. Suppose that N points are evenly spaced on the circumference of a circle. Every point is
connected to every other point by a line segment. Nonconsecutive points are connected in 7
times as many ways as consecutive points. Now, suppose it costs money to connect points.
Consecutive point connections cost $B while nonconsecutive point connections cost $A, where
A and B are integers and B > A > 0. Compute the ordered pair (A,B) if B is as small as
possible and the total connection cost is $2550.



2013 Team Answers

T-1. 3351

T-2. 12

T-3. 8

T-4. 501

T-5. 4, 54, 343 in any order

T-6. 5

T-7. 12

T-8. 99

T-9. 33
2

√
2− 3

√
3

T-10. (18, 24)
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2013 Team Solutions

T-1. We have G = 1320 and L = 2031, so our answer is 1320 + 2031 = 3351.

T-2. Let x denote the edge of the cube. Then the volume of the required region is x3 − 1
3
· x2 · x =

2
3
x3 = 1152 = 8(144), so x3 = 123, and thus x = 12.

T-3. Any Pythagorean triple can be generated from integer p and q as follows: p2 − q2 or 2pq or
p2 + q2. The question is: How can (p, q), where p > q, form a factor of 130, keeping in mind
the fact that we can sometimes dilate a “primitive” triangle so that one of its sides is 130?

Note that each triplet is represented twice in the table, so there are only 8 distinct Pythagorean
triples with this property.

T-4. There are many more two’s than five’s in the factorization of 2013!, so we will count up the
five’s and know that each one will pair up with a two to give a terminal zero. There will be
at least one factor of 5 in every number in the set {5, 10, 15, . . . , 2010 = 5 · 402}, so there are
at least 402 terminal zeroes in 2013!. Further, there will be at least two factors of 5 in every
number in the set {25, 50, 75, . . . , 2000 = 25 · 80}, at least three factors of 5 in every number
in the set {125, 250, 375, · · · , 2000 = 125 · 16}, and at least four factors of 5 in every number
in the set {625, 1250, 1875}. Our answer is 402 + 80 + 16 + 3 = 501.

T-5. We have 2πr2 = 2πrh + kπ which implies 2r2 = 2rh + k. We also have πr2h = kπ which
implies k = r2h. Substituting and simplifying, we have 2r = 2h+ rh = h(r + 2). This means
h = 2r

r+2
and k = 2r3

r+2
. We notice that if k is integral, then r is a power of 2. Trying r = 2,

r = 6, and r = 14, we obtain k = 16
4

= 4, k = 412
8

= 54, and k = 2(14)3

24
= 73 = 343. Are there

any more? Dividing,
2r3

r + 2
= 2r2 − 4r + 8− 16

r + 2
. If r > 14, the last term in the expression

is non-integral; thus, there are only three values of k: 4, 54, and 343.
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54 2013 Team Solutions

T-6. Note that 0.a1a2 . . . an =
a1a2 . . . an

99 · · · 9︸ ︷︷ ︸
n nines

must reduce to 1
p
, so p must be a prime factor of 99 · · · 9︸ ︷︷ ︸

n nines

.

Now,

9 = 32, 99 = 32 · 11, 999 = 33 · 37, 9999 = 32 · 11 · 101, 99999 = 32 · 41 · 271

and

1

3
= 0.3,

1

11
= 0.09,

1

37
= 0.027,

1

101
= 0.0099,

1

41
= 0.02439,

1

271
= 0.00369.

So f(p) = 1 only when p = 3, f(p) = 2 only when p = 11, f(p) = 3 only when p = 37,
f(p) = 4 only when p = 101, but f(p) = 5 when p = 41 or p = 271.

This problem was originally written by Dr. Leo J. Schneider, who wrote NYSML contests
from 2001 until his death in 2010. We include this problem to honor his memory.

T-7. Since BE is an angle bisector, it splits the side of the triangle to which it is drawn in the
ratio of the other two sides. Thus, AB = 4x and BC = 8x for some number x. Similarly,
AD = 12y and DB = 8xy for some number y. We are given that AD = 3, so y = 1/4, and
so DB = 2x. Thus, we can solve AD + DB = AB, or 3 + 2x = 4x to obtain 2x = 3, so
BC = 8x = 12.

T-8. Suppose the first k seats are filled with senators. If the next senator sits in chair k + 2 or
greater, nobody stands up. Continuing, if a senator sits in chair k+ 1 and the senator sitting
in chair k + 2 stands up, our fearless leaders will have filled the first k + 1 seats. This is
reminiscent of mathematical induction! This scenario could continue until 98 senators occupy
the first 98 chairs. Then the 99th senator sits in the 100th chair, and the 100th senator must
sit in a seat with at least one neighbor, so it is impossible for them all to be seated. The
maximum is 99.

T-9. The area of 4NY S equals the area of 4NOY plus the area of 4Y OS minus the area of
4NOS. Thus, the desired area is 1

2
· 4 · 6

√
2 sin 90◦ + 1

2
· 3 · 6

√
2 sin 30◦ − 1

2
· 4 · 3 sin 120◦, or

12
√

2 + 9
2

√
2− 3

√
3 = 33

2

√
2− 3

√
3.

This is a “NYSML Classic”. It is very much like question T10 from NYSML1983. We
think it’s an oldie but a goodie!

T-10. There are N possible consecutive point connections (think about the sides of the N -gon)

and there are N(N−3)
2

possible nonconsecutive point connections (the diagonals of the N -gon).

Thus,
N

N(N−3)
2

=
2

N − 3
=

1

7
implies that N = 17 and 17B + 119A = 2550 implies that

B = 150 − 7A. Certainly, (A,B) = (1, 143) satisfies the requirements but not with minimal
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B. Since as A increases by 1, B decreases by 7, we require that after x decrements of 7 to
B and x increments of 1 to A, B = 143 − 7x > A = 1 + x → 142 > 8x → x ≤ 17. Thus,
A = 1 + 17 = 18 and B = 143− 7(17) = 24. The answer is (18,24).



2013 Individual Problems

I-1. Compute the units digit of 20132013.

I-2. Compute the number of ordered pairs (x, y) of integers that satisfy 0 < x < 10 and 0 < y ≤ 10
and |x− y| = 1.

I-3. The quadratic equation (2x − 1)(5x + 3) = 35 has one integer solution and one non-integer
solution. Compute the non-integer solution.

I-4. Compute
2013∑
k=1

(−1)kk2.

I-5. Consider quadratic equations of the form x2 +Bx+C = 0 where B is a one-digit odd positive
integer and C is a two-digit odd positive integer. Of the 5 · 45 = 225 quadratic equations of
this type, N have two integer solutions. Compute N .

I-6. Three of the vertices of a cube have coordinates V (2, 3, 5), E(5, 7, 5), and R(5, 7, 0). Compute
the surface area of the cube in square units.

I-7. Compute
√

100 · 101 · 102 · 103 + 1.

I-8. A regular dodecagon (12-sided polygon) has a perimeter of 12. Compute its area.

I-9. Compute the following sum:

sin(1◦) cos(59◦) + sin(2◦) cos(58◦) + sin(3◦) cos(57◦) + · · ·+ sin(59◦) cos(1◦).

I-10. The zeroes of f(x) = Ax5 + Bx4 + Cx3 + Dx2 + Ex + F form an arithmetic progression of
positive integers whose average is 2013. For all possible values of the coefficients A, B, C, D,
E, and F , compute the least possible zero of g(x) = Fx5 + Ex4 +Dx3 + Cx2 +Bx+ A.
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2013 Individual Answers

I-1. 3

I-2. 17

I-3.
19

10
or 1.9

I-4. −2027091

I-5. 0

I-6. 150

I-7. 10301

I-8. 3
√

3 + 6

I-9.
59

4

√
3

I-10.
1

4025
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2013 Individual Solutions

I-1. We notice that as we raise 2013 to successively larger powers, the units digit follows a pre-
dictable pattern: 3, 9, 7, 1, 3, 9, 7, 1, ... . Since 2013 = 503 · 4 + 1, 20132013 has the same
units digit as 20131. Our answer is 3.

I-2. The equation |x− y| = 1 tells us that the x- and y-coordinates differ by ±1. This will usually
mean that an x-value can be paired with exactly 2 y-values, one higher and one lower. This
is the case for 2 ≤ x ≤ 9, but not for x = 1. Thus, there are 8 · 2 + 1 = 17 ordered pairs
(x, y).

I-3. The equation (2x− 1)(5x+ 3) = 35 is equivalent to 10x2 + x− 38 = 0. Since one solution is
an integer, one factor is (x±A) and the other is (10x∓B), where the signs are intentionally
reversed. After some experimentation, we have (10x − 19)(x + 2) = 0, so the non-integer

solution is
19

10
or 1.9.

I-4. Since (2j)2 − (2j − 1)2 = 4j − 1, we have
∑2013

k=1 (−1)kk2 =
∑1006

j=1 [(2j)2 − (2j − 1)2] − 20132,

which is
∑1006

j=1 [4j − 1]− 4052169 =
[
41006·1007

2
− 1006

]
− 4052169 = −2027091.

Alternate Solution: Note that
∑2013

k=1 (−1)kk2 = −1 +
∑1006

j=1 [(2j)2 − (2j + 1)2], which equals

−{1 +
∑1006

j=1 [4j + 1]} = −{1 +
[
41006·1007

2
+ 1006

]
} = −2013 · 1007 = −2027091.

This problem was originally written by Dr. Leo J. Schneider, who wrote NYSML contests
from 2001 until his death in 2010. We include this problem to honor his memory.

I-5. The roots are integers that multiply to −C, an odd integer. Thus, the roots must be each
odd integers. However, if the roots are odd integers, their sum must be even, and that would
make −B even, which would make B even, contrary to assumption. Therefore, there are no
quadratic equations of this type that have two integer solutions. Our answer is N = 0.

This is a “NYSML Classic”. It is very much like question I7 from NYSML2003. Math
never goes bad!

I-6. Let’s compute the distances between each pair of the given vertices. Notice that V E =√
(5− 2)2 + (7− 3)2 + (5− 5)2 = 5, V R =

√
(5− 2)2 + (7− 3)2 + (0− 5)2 =

√
50 = 5

√
2,

and ER = 5 (by counting boxes). Since the three lengths satisfy the Pythagorean Theorem,
V R is the hypotenuse of a right triangle with right angle at E, and so the side length of the
cube is V E = 5. The surface area of the cube is 6 · 52 = 150.
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I-7. Let x = 100. Then the desired quantity is
√
x(x+ 1)(x+ 2)(x+ 3) + 1, which equals√

x(x+ 3)(x+ 1)(x+ 2) + 1 =
√

(x2 + 3x)(x2 + 3x+ 2) + 1, which is
√

(x2 + 3x)2 + 2(x2 + 3x) + 1,

and this can be factored as
√

(x2 + 3x+ 1)2 = x2 + 3x + 1. Substituting x = 100, we have
our value of 10301.

I-8. The dodecagon can be split into 12 congruent 30◦ − 75◦ − 75◦ triangles. In each of these
triangles, the lengths of the congruent sides is s = 2 sin 75◦, so the area of each of the 12

triangles is A = 1
2
· (4 sin2 75◦) · 1

2
= sin2 75◦. Because we know that sin 75◦ =

√
6 +
√

2

4
, we

have sin2 75◦ =

√
3 + 2

4
, and the area of the dodecagon is 12 ·

√
3 + 2

4
= 3
√

3 + 6.

I-9. Consider the first and last terms of this sum; they add to sin(60◦) =

√
3

2
(consult your favorite

text on sum and difference trig formulas). So do the second and second-to-last, and the third
and the third-to-last, and so on. There are 29 such pairings, and one term with no partner –

sin(30◦) cos(30◦) =

√
3

4
. The desired sum is

29
√

3

2
+

√
3

4
=

59

4

√
3.

I-10. When the set of coefficients of a polynomial are reversed in order, the new roots are the
reciprocals of the original roots. Seeing this, what is the reciprocal of the largest possible root
of f(x)? Whatever the common difference d is, the roots of f(x) are the integers 2013 − 2d,
2013 − d, 2013, 2013 + d, and 2013 + 2d. The least positive integer that 2013 − 2d could be
occurs if d = 1006 and 2013 − 2(1006) = 1. Thus, 2013 + 2(1006) = 4025. Thus, the least

possible root of g(x) is
1

4025
.



Power Question 2013: Elections

If only two candidates run for an office, it is straightforward to determine the results of an election:
the one with the majority of votes. However, if there are more than two candidates, the deter-
mination is not so straightforward. For example, in a race with three candidates, suppose that
one candidate receives one more than one third of the votes, one received one third and the third
candidate receives one less than one third of the votes. The candidate who received the most votes
was disapproved by almost two thirds of the electorate. With more candidates, the situation could
become even worse. This problem will explore voter profiles. A voter profile is an individual
voter’s ranking of the candidates. We allow for indifference; that is, a voter may rank one candidate
higher than all others but may be indifferent to the ranking of others. This question will explore
the number of voter profiles among n candidates. We will not address the issue how to use the
profiles to determine a winner in an election. There are several competing methods, all of which
have some drawbacks. The celebrated Arrow’s Theorem states that there does not exist a system
that can meet certain naturally desired properties, such as lack of a dictator and others. First some
terminology.

Pn The number of possible voter profiles with n candidates.

tiers In a profile, a tier is a set of candidates that the voter ranks equally. Within a tier, the
order the candidates are listed is immaterial. For example, with three candidates the profiles
A/B,C and A/C,B are the same. The notation gives an example of a two-tier profile with
three candidates. Candidate A is ranked highest, and the voter is indifferent to candidates B
and C, but ranking them both lower than A.

Pn,k The number of possible profiles with n candidates using k tiers. We note that a tier must
contain at least one candidate. We assume throughout the problem that n and k are positive
integers and that k ≤ n.

An example

P3 = 13 as shown below.
One-tier profiles: A,B,C
Two-tier profiles: A/B,C, B/A,C, C/A,B, A,B/C, A,C/B, A,B/C
Three-tier profiles A/B/C, A/C/B, B/A/C, B/C/A, C/A/B, C/B/A

The table also shows that P3,1 = 1, P3,2 = 6, and P3,3 = 6.

Binomial and Multinomial Coefficients

Certain ideas relating to binomial and multinomial coefficients apply to this situation. If (X + Y )n

is expanded, the coefficient of the XkY n−k term is
(
n
k

)
= n!

k!(n−k)!
. If X = Y = 1, the result is∑n

k=0

(
n
k

)
= 2n. (In other words, the nth row of Pascal’s triangle sums to 2n). This can be general-

ized. If (X1 +X2 + · · ·+Xk)
n is expanded, the coefficient of the Xa1

1 X
a2
2 · · ·Xak

k term is
(

n
a1,a2,··· ,ak

)
=
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n!
a1!a2!···ak!

. Similarly, letting X1 = X2 · · · = Xk = 1 shows that
∑

a1+a2···+ak=n

(
n

a1,a2,··· ,ak

)
= kn. The

multinomial coefficient
(

n
a1,a2,··· ,ak

)
also represents the number of ways of placing n objects into k

boxes in such a way that box j gets aj of the objects. Here the objects are the candidates and the
boxes are the tiers. Thus there are kn ways of placing n candidates into k boxes. However, not all
of there will represent legitimate k-tier voter profiles since one or more of the tiers may be empty.
If necessary, candidates can be referred to as C1, C2, etc., and tiers as T1, T2, etc.

P-1. Recall that P3,1 = 1. Show that Pn,1 = 1 for all n. [4 pts]

P-2. It is true that P3,3 = 6 = 3!. Show that Pn,n = n! for all n. [4 pts]

P-3. It is true that P3,2 = 6 = 23 − 2. Show that Pn,2 = 2n − 2. [4 pts]

P-4. Show that Pn =
∑n

k=1 Pn,k. [5 pts]

P-5. Provide an argument or list all possibilities to show that P4,3 = 36. [4 pts]

P-6. Show that P4 = 75. [4 pts]

P-7. Show that Pn,3 = 3(3n−1 − 2n + 1) for all n. [5 pts]

P-8. Show that Pn,n−1 = n!(n − 1)/2. A reasonable way to think about this is to think about
placing the candidates in the tiers in such a way that no tier is empty. [5 pts]

P-9. Compute, with work, the value of P5. [4 pts]

P-10. Show that Pn,k satisfies the recursive relation Pn+1,k = kPn,k + kPn,k−1. [5 pts]

P-11. Prove that Pn,k = kn −∑k−1
j=1

(
k
j

)
Pn,k−j. [6 pts]



Solutions to 2013 Power Question

P-1. Because all the candidates are on the same tier, and there is no importance in the order, there
is only one way to place the n candidates.

P-2. Here, the order in which the n candidates are placed in the n tiers matters. This is equivalent
to the fact that there are n! ways to arrange the n candidates in a line.

P-3. For n candidates, there are 2n ways of placing them into two tiers. But the two possibilities
of putting all candidates in the first tier or all in the second tier must be eliminated. This
leaves 2n − 2 possibilities.

P-4. Given n candidates, there must be 1 or 2 or ... or n tiers. For each k = 1, 2, · · · , n, there are
Pn,k profiles.

P-5. There are 4 × 3 × 2 ways to place one candidate onto each of the three tiers. The fourth
candidate can be placed in three ways. This gives 24 × 3 = 72 possibilities. However, this
must be divided by 2 to account for the two ways of placing the candidates on the one tier
which has two candidates.

P-6. By P-4, P4 = P4,1 + P4,2 + P4,3 + P4,4 = 1 + 24 − 2 + 36 + 4! = 1 + 14 + 36 + 24 = 75.

P-7. We know that Pn,3 is equal to 3n minus the sum of all possibilities in which one or more
tiers is empty. There are three ways to choose one empty tier. Then, the candidates can be
placed into the two remaining tiers in Pn,2 = 2n − 2 ways. There are three ways to choose
two empty tiers and only one way to place the candidates into the remaining tier. Thus,
Pn,3 = 3n − 3(2n − 2) − 3. Factoring out the common factor of 3 gives 3(3n−1 − 2n + 2 − 1),
which is the desired result.

P-8. Similarly to the argument in P-5, there are n× (n− 1)× (n− 2)× · · · × 2 = n! ways to place
one candidate in each of n − 1 tiers. There are then n − 1 ways to place the last candidate.
But this must be divided by 2 to account for the two ways to place the candidates on the tier
with two candidates.

P-9. Using the result from P-4 again, P5 = P5,1 + P5,2 + P5,3 + P5,4 + P5,5. Using previous work,
each of these can be easily computed. P5,1 = 1, P5,2 = 25−2 = 30, P5,3 = 3(34−25 +1) = 150,
P5,4 = 5!× 4/2 = 240, and P5,5 = 5! = 120. Summing gives P5 = 541.

P-10. A candidate may be alone on a tier or on a tier with others. If the candidate Cn+1 is not
alone, take one of the Pn,k k-tier profiles with n candidates and place Cn+1 on one of the
k-tiers. This can be done in kPn,k ways. If Cn+1 is alone, take one of the Pn,k−1 (k − 1)-tier
profiles and insert a space for a new tier. This insertion can be done in k ways. Summing the
two possibilities gives the result.

P-11. If empty tiers were allowed, there would be kn possible ways to place the n candidates into the
k tiers. To eliminate profiles with empty tiers, suppose there are j such tiers. There are

(
k
j

)
ways to choose the empty tiers, and for each of these ways, there are Pn,k−j ways of placing
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the n candidates on the k − j tiers. This must be done for j = 1, 2, · · · , k − 1 and the result
follows.



2013 Relay Problems

R1-1. If (3x− 1) is a factor of 15x2 + kx− 4, compute k.

R1-2. Let N be the number you will receive. Parallelogram HELP has vertices at H(1, 0), E(N, 3),
and P (2, 4). The equation of the line containing diagonal HL can be expressed as Ax+By = C
where A, B, and C are integers with no common factor other than 1. Compute |C|.

R1-3. Let N be the number you will receive. The positive difference between the roots of x2 +Bx+ C = 0
is N . If C + B = 155, and if the roots are positive, compute the larger root of the quadratic
equation.

R2-1. All of the letters of the word ABSOLUTELY are to be arranged such that exactly one vowel
and no other letter is sandwiched between the two L’s. This can be done in 2A · B! ways
(where A and B are positive integers and B is as small as possible). Compute the ordered
pair (A,B). Do not consider Y a vowel.

R2-2. Let (A, B) be the ordered pair you will receive. Compute the sum of all values of x for which
|2x− A| = B − x. If the equation |2x− A| = B − x has no solutions, pass back 0.

R2-3. Let N be the number you will receive. Compute all values of x such that

|x−N | = 10− |x−N − 1|.
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2013 Relay Answers

R1-1. 7

R1-2. 1

R1-3. 14

R2-1. (5, 7)

R2-2. 2

R2-3. −2.5, 7.5 or equivalent simplified answers, in either order
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R1-1. The other factor must be of the form (5x + B), and since −1 · B = −4, we have B = 4 and
(3x− 1)(5x+ 4) = 15x2 + 7x− 4. Our answer is 7.

R1-2. The slope of HE is the same as the slope of LP , so we substitute and equate
3− 0

7− 1
=

4− y
2− x

where (x, y) are the coordinates of L. This tells us that 8− 2y = 2− x→ x− 2y = −6. We
also have that the slope of HP is the same as the slope of LE, so we substitute and equate
4− 0

2− 1
=
y − 3

x− 7
where (x, y) are the coordinates of L. This tells us that 4x − 28 = y − 3 →

4x − y = 25. This system solves to give us L(8, 7). The equation of the line we want is
y − 0 = 1(x− 1), or x− y = 1. Our answer is 1.

R1-3. Let the roots be r and r−N . We have C+B = r(r−N)−(r+r−N) = r2−(2+N)r+N = 155.
Substituting, this is equivalent to r2 − 3r − 154 = 0. Factoring gives us (r − 14)(r + 11) = 0,
whose only positive root is r = 14.

R2-1. The three-letter combination LXL occupies three consecutive positions, and these positions
could begin anywhere from the first slot to the eighth slot, which gives a total of 8 possibilities.
The wildcard X could be any of the four vowels. The remaining 7 letters are all different, so
they can fill the remaining spaces in 7! ways. Thus, there are 4 · 8 · 7! = 25 · 7! ways to arrange
the letters satisfying the given conditions. Pass back (5,7).

R2-2. First, we must assume that B − x is nonnegative, or else the equation cannot have a solution
at all. So, with this assumption, we have 2x−A = ±(B−x), and thus x = A+B

3
or x = A−B.

The sum of these is
4A− 2B

3
. The answer must be 0 or

4A− 2B

3
. For (A,B) = (5, 7), we

have x = 4 or x = −2, and both of those produce a non-negative value for B − x. Thus, our

sum is 4− 2 = 2 =
4 · 5− 2 · 7

3
.

R2-3. Our equation is equivalent to |x−N |+ |x− (N +1)| = 10. Since N and N +1 are consecutive
integers, they are coordinates of two points on the number line 1 unit apart; call them P and
Q. Let x be the coordinate of a generic point R on the number line. Then, our equation is
equivalent to RP +RQ = 10. If R were between P and Q, then RP +RQ = 1; thus, no point
between P and Q could be a solution. If R is to the left of P, we have N − x+ (N + 1)− x =
10 → x = 2N−9

2
. If R is to the right of Q, we have x −N + x − (N + 1) = 10 → x = 2N+11

2
.

Substituting, we have x = −5/2 or x = 15/2.
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2013 Tiebreaker Problems

TB-1. The sum of the infinite series
1

2013
+

2

20132
+

3

20133
+ · · ·+ n

2013n
+ · · · can be written as

A

B2
,

where the fraction is in lowest terms. Compute the sum of the infinite series in this form.

TB-2. Three of the vertices of a cube have coordinates C(4, 7, 9), U(5,−2, 5), and B(8, 6, 0). Com-
pute the volume of the cube in cubic units.
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TB-1.
2013

20122

TB-2. 343
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2013 Tiebreaker Solutions

TB-1. We may look at this series as an infinite sum of infinite series: (
1

2013
+

1

20132
+

1

20133
+ · · ·+

1

2013n
+ · · · )+(

1

20132
+

1

20133
+

1

20134
+ · · ·+ 1

2013n+1
+ · · · )+(

1

20133
+

1

20134
+

1

20135
+ · · ·+

1

2013n+2
+ · · · )+ · · · . This becomes

1
2013

1− 1
2013

+
1

20132

1− 1
2013

+
1

20133

1− 1
2013

+ · · · , which is equivalent to

1

2012
+

1

2013 · 2012
+

1

20132 · 2012
+ · · · , or

1

2012

Å
1 +

1

2013
+

1

20132
+ · · ·

ã
, which has sum

2013

20122
.

TB-2. Let’s compute the distances between each pair of the given vertices. Note that

CU =
»

(5− 4)2 + (−2− 7)2 + (5− 9)2 =
√

98,

UB =
√

(8− 5)2 + (6− (−2))2 + (0− 5)2 =
√

98, and CB =
√

(8− 4)2 + (6− 7)2 + (0− 9)2 =√
98. Because these three vertices form an equilateral triangle, it must be that each pair of

these given vertices are opposite vertices of a face of the cube. Because the diagonal of one
face of the cube measures

√
98 = 7

√
2, we have that the edge length of the cube is 7

√
2√
2

= 7.

The volume of the cube is 73 = 343.
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2014 Team Problems

T-1. In a box with 10 blocks, 6 are identical red blocks and 4 are identical blue blocks. Chris is
going to make a tower of these 10 blocks, stacking one on top of the other until the tower is
10 blocks high. Compute the number of distinct towers Chris can make.

T-2. For positive integer values of x, there are exactly 5 integers between x and x+6, namely x+1,
x+2, x+3, x+4, and x+5. However, the number of integers between x2 and (x+6)2 depends
on the value of x. In terms of x, find a simplified expression for the number of integers strictly
between x2 and (x+ 6)2.

T-3. The value of 22014 + 22017 + 2n is a perfect square for one integer n ≥ 2017. Compute this
value of n.

T-4. Pascal’s Hexagon consists of concentric hexagons each containing 6 overlapping copies of
Pascal’s Triangle, except for the innermost hexagon which contains a single 1. A Level 3
Pascal’s Hexagon is shown. If the pattern were to be continued to create a Level 7 Pascal’s
Hexagon, the sum of all of the numbers in the Hexagon would be P . Compute P .

 

T-5. Compute the number of integers in {10000, 10001, 10002, · · · , 99999} that are palindromes
and multiples of 99.

T-6. Any circle in the (x, y)-plane that passes through (6,−8) and (8,−2) cannot also pass through
the point (K, 2014). Compute K.
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T-7. In trapezoid ABCD, diagonals AC and BD are drawn, splitting it into four regions (num-
bered I, II, III, and IV). The area of each numbered region is a positive integer. The area
of region II is 2014. Compute the greatest possible difference between any two of these four
numbered areas.

 

T-8. Larry and Gil each select a number from the set {1, 2, · · · , 12, 13}, raise their numbers to the
2014th power, and then add the results. They find that the last four digits of their sum are
9952. Given that the numbers that Larry and Gil selected were L and G, and given that
L < G, compute the ordered pair (L,G).

T-9. Let f(x) = 5x + 1, f 2(x) = f(f(x)), and so on, so that in general, fn+1(x) = f(fn(x)) for
natural numbers n ≥ 1. Compute the greatest prime factor of f 7(31).

T-10. Given a regular n-gon, if k more sides were added to produce a regular polygon with (n+ k)
sides, where k ≥ 1, then the measure of each interior angle would increase by (k+ 3) degrees.
Compute the sum of the four possible values of k such that k < 30.



2014 Team Answers

T-1. 210

T-2. 12x + 35

T-3. 2018

T-4. 1483

T-5. 2142

T-6. 680

T-7. 4056195

T-8. (4, 6)

T-9. 521

T-10. 43
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2014 Team Solutions

T-1. Choose the locations for the 4 blue blocks; this will determine the locations for the red blocks.

Therefore, we seek

Ç
10

4

å
=

10 · 9 · 8 · 7
4 · 3 · 2 · 1 = 210.

T-2. The smallest integer in the specified interval is x2 + 1. The largest integer is (x + 6)2 − 1 =
x2 + 12x+ 35. Subtracting x2 from each, we count the integers from 1 to 12x+ 35 inclusive.
There are 12x+ 35 such integers.

T-3. If 22014 + 22017 + 2n = 22014(1 + 23 + 2n−2014) = 22014(9 + 2n−2014) is a perfect square, then
9+2n−2014 is a perfect square. Notice that 9+16 = 25 is a perfect square. For a more thorough
solution, consider 9 + 2x = y2; this implies 2x = (y − 3)(y + 3), so y − 3 and y + 3 are powers
of 2 that are 6 units apart, or 2 and 8. Thus, y = 5 and x = 3. Therefore, n− 2014 = 4 and
n = 2018.

T-4. The nth row of Pascal’s Triangle adds up to 2n. Thus, the sum of all of Pascal’s Triangle up
to and including Row n will be 2n+1 − 1. However, to make Pascal’s Hexagon, the 1s along
the edges get counted in two Triangles each (so subtract them out), and the 1 in the center is
both included and excluded for all six Triangles (so add it back in). That is a grand total of
6((2n+1 − 1)− (n+ 1)) + 1. For n = 7, that sum is 6(255− 8) + 1 = 1483.

T-5. Since abcba = 10001a+ 1010b+ c = (9999a+ 990b) + (2a+ 20b+ c) and a, b, and c are digits
with a > 0, it follows that abcba will be divisible by 99 if and only if 2a + 20b + c = 99 or
198. The fact that 2 ≤ 2a + c ≤ 27 implies that b = 4 and 2a + 20b + c = 99 or b = 9 and
2a + 20b + c = 198. When b = 4 we have 2a + c = 19 which yields abcba = 94149, 84348,
74547, 64746, and 54945. When b = 9 we have 2a+c = 18 which yields abcba = 99099, 89298,
79497, 69696, and 59895. The answer is 10.

This question was authored by Dr. Leo J. Schneider, who passed away in 2010. Dr. Schnei-
der was the main author of NYSML from 2001-2010. We include this question to honor his
memory.

T-6. Any three points determine a circle unless they are collinear. The line through (6,−8) and
(8,−2) is y = 3x− 26. Solving 3K − 26 = 2014 yields K = 680.

This is a “NYSML Classic”. It is very much like question T7 from NYSML2004. We think
it’s an oldie but a goodie!
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T-7. The ratio of the areas I:II:III:IV is x2 : xy : y2 : xy for some values x and y. (Consider why
this is true... We know that the ratio I:III will be the square of the ratio of the sides; call
those x and y. Then, consider I:II. They share an altitude, and their bases to that altitude
are segments of diagonal AC that are in the proportion x:y, so the ratio of their areas is
x:y. Similar proportions hold to obtain the desired result.) If all four numbered areas need
to have integer values, then 2014 = xy and the biggest difference will occur between III
and I. The value of y2 − x2 will be greatest when y = 2014 and x = 1, so our answer is
20142 − 12 = (2015)(2013) = 4056195.

T-8. Notice that L2014 +G2014 is the sum of two perfect squares and that its units digit is 2. Since
every perfect square ends in 0, 1, 4, 5, 6, or 9, L2014 and G2014 either both end in 1 or both
end in 6. A perfect square ends in 6 if and only if its tens digit is odd (a result that the
reader should prove to himself or herself). Thus, if L2014 and G2014 both end in 1, their tens
digits are even, and therefore the tens digit of the sum will be even. Since the tens digit is
odd, L2014 and G2014 both end in 6. The only digits satisfying the criteria are 4 and 6, so
(L,G) = (4,6).

T-9. Notice that f 2(1) = 31, so f 7(31) = f 9(1). Now, notice that f 9(1) = 59 + 58 + 57 + · · ·+ 5 + 1,

or
510 − 1

5− 1
, which is 1

4
· (55 + 1)(55 − 1) = 1

4
· 3126 · 3124 = 1563 · 1562. This factors as

3 · 521 · 2 · 11 · 71. The greatest prime factor is 521.

T-10. The measure of an interior angle of a regular n-gon is
180(n− 2)

n

◦

. The measure of an inte-

rior angle of a regular (n + k)-gon is
180(n+ k − 2)

n+ k

◦

= 180

Å
1− 2

n+ k

ã◦
. We require that

180

Å
1− 2

n+ k

ã
− 180(n− 2)

n
= k+ 3. This implies that 180− 360

n+ k
− 180 +

360

n
= k+ 3⇒

360

Å
1

n
− 1

n+ k

ã
= k + 3, which implies

360k

n(n+ k)
= k + 3, so n(n + k) =

360k

k + 3
. Now we

know n2 + kn− C = 0 where C =
360k

k + 3
.

By the quadratic formula, we have n =
−k ±

√
k2 + 4C

2
and since n ≥ 3, n =

−k +
√
k2 + 4C

2
.

Since the least possible interior angle of a regular polygon is 60◦ and the greatest possible inte-
rior angle is less than 180◦, the difference is less than 120◦ and 4 ≤ k+3 < 120⇒ 1 ≤ k < 117.
Thus, we require that k2 + 4C be a perfect square and we examine (k,

√
k2 + 4C) for integer

values of k between 1 and 30. The fruits of our labor are:
If k = 1, then

√
k2 + 4C = 19 and n = 9.

If k = 3, then
√
k2 + 4C = 27 and n = 12.

If k = 12, then
√
k2 + 4C = 36 and n = 12.

If k = 27, then
√
k2 + 4C = 45 and n = 9.

No other values of k generate integers n. Our sum is 1 + 3 + 12 + 27 = 43.



2014 Individual Problems

I-1. A rectangular box has a volume of 2014 cubic inches. Each side has an integer length, and
each side measures more than 1 inch. Compute the least possible area of one face of the solid.

I-2. A palindrome is a number that reads the same forwards and backwards. Call a palindrome n
a superpalindrome if removing any two digits of n leaves a palindrome. Compute the number
of superpalindromes between 100 and 10000.

I-3. Rhombus RHOM has a perimeter of 24 cm. Square ROSE has an area of 64 sq cm. Compute
the area of rhombus RHOM in sq cm.

I-4. Dora and Diego are solving a NYSML problem independently. The probability that Dora
and Diego both solve the problem is 0.22. The probability that Dora or Diego (but not both)
solves the problem is 0.51. Dora has a greater probability of solving the problem than Diego
does. Compute the probability that Dora solves the problem.

I-5. In 4ABC, AB = 4 and AC = 6. D is the midpoint of AC and BD = 3. Compute the area
of 4ABC.

I-6. A and B are two consecutive vertices in a convex n-gon (a polygon with n sides). If all
diagonals from these two vertices are drawn, there are 406 points of intersection in the interior
of the polygon. Compute n.

I-7. If log2 (log4(log16(x))) = 2, compute 8log32(log2(x)).

I-8. Regular hexagon HEXAGN is inscribed in circle O, and R is a point on minor arc HN of
circle O. If RE = 10 and RG = 8, then RN can be expressed in the form a

√
b + c, where a,

b, and c are integers. Compute RN in this form.

I-9. For every positive integer n, let f(n) equal the sum of the cubes of the digits of n. For
example, f(1234) = 100 since 1 + 8 + 27 + 64 = 100. Compute the greatest n for which
f(n) > n.

I-10. If x2 + x− 1 = 0, compute all possible values of
x2

x4 − 1
.
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I-1. 38

I-2. 99

I-3. 16
√

5

I-4. 0.55 or
11

20

I-5. 4
√

5

I-6. 31

I-7. 64

I-8. 4
√

3− 5

I-9. 1999

I-10. ±
√

5
5 (need both answers)
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I-1. Notice that 2014 = 2 ·19 ·53. Thus, the faces have areas 2 ·19, 2 ·53, and 19 ·53. The smallest
of these is 2 · 19 = 38.

I-2. Notice that any three-digit number is a superpalindrome since removing any two digits leaves
a one-digit number (which is a palindrome). Since there are 9·10 = 90 three-digit palindromes,
there are 90 three-digit superpalindromes. Now, if abba is a four-digit superpalindrome, then
ab must be a palindrome, which means a = b. Thus, a four-digit superpalindrome must be of
the form aaaa, and there are 9 of those. Therefore, we have 90 + 9 = 99 superpalindromes
between 100 and 10000.

I-3. A side of ROSE lies on the long diagonal of RHOM and has length
√

64 = 8. Thus, if both
diagonals are drawn and intersect at X, RX = 1

2
(8) = 4 and MX =

√
62 − 42 = 2

√
5. Thus,

the area of RHOM is four times the area of triangle RMX, or 4 · 1
2
· 2
√

5 · 4 = 16
√

5.

I-4. Let the probability that Dora solves the problem be p and the probability that Diego solves the
problem be q. Then pq = 0.22 and p(1−q)+q(1−p) = 0.51→ p+q−2pq = 0.51→ p+q = 0.95.
There are two values that solve this system: p = 0.4 or p = 0.55. We choose p = 0.55.

This is a “NYSML Classic”. It is very much like question T3 from NYSML1999. Math
never goes bad!

I-5. We could proceed with Stewart’s Theorem and Heron’s Formula, but there may be an easier
way. Notice that 4ABD is isosceles. If we let E denote the midpoint of AB, then DE is the
altitude of 4ABD and we can use the Pythagorean Theorem to find that DE =

√
5. Observe

that 4AED is similar to 4ABC by a ratio of 1 : 2. Thus, BC = 2
√

5 and the area of (right)
triangle ABC is 1

2
· 4 · 2

√
5 = 4

√
5.

I-6. Examine a few polygons with a small number of sides.

Draw all the diagonals from the first vertex A traversing the polygon in a clockwise direction
to reach the opposite endpoints. Proceeding clockwise from A to the adjacent vertex B,
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draw the diagonals in a similar fashion. The first diagonal drawn intersects exactly one other
diagonal. Each successive diagonal drawn intersects one more diagonal. Therefore, we must

sum the first (n−3) positive integers. This means
(n− 3)(n− 2)

2
= 406. Thus, we are looking

for two consecutive integers whose product is 812. Take the square root of 812 ≈ 900 to get a
starting approximation of 30. We see that 30 · 29 = 870, which is too big. But, 29 · 28 = 812
– Bingo! Thus, n− 3 = 28→ n = 31.

I-7. Solving for x, we obtain 22 = log4(log16(x)), which implies 44 = log16 x, which implies 16256 =
x = 21024. Therefore, 8log32(1024) = 82 = 64.

I-8. Since ∠ERG is inscribed on a diameter of a circle, it is a right angle, and so EG =
√

102 + 82 =
2
√

41. Thus, OG =
√

41, and since 4ONG is equilateral, NG =
√

41. Consider 4ENG,
which is right, so EN =

√
164− 41 =

√
123. Now, consider 4ERN . We know that ∠ERN

measures 120◦, so we apply the Law of Cosines to 4ERN : 123 = 102 +RN2−2 ·10 ·RN ·−1
2
,

which gives us RN2 + 10RN − 23 = 0, which can be solved to obtain RN = 4
√

3− 5.

I-9. The greatest n must have fewer than 4 digits since when n ≥ 4, we have n · 93 < 10n − 1
making f(n) < n. In the following, let a, b, c, and d represent digits base 10, and dcba will
represent a four digit integer, occasionally with one or more of d, c, b, or a being constant.
When 9 ≥ d > 2, we have f(dcba) ≤ f(d999) = d3 + 3(729) = d3 + 2187 < 2999 < dcba, so
n < 3000.
If d = 2, then f(2cba) ≤ 8+512+2(729) = 1978 < 2cba if any one of c, b, a < 9. Furthermore,
f(2999) = 2195 < 2999, so n < 2000.
Since f(1999) = 2188 > 1999, we have the largest n = 1999.

This problem was originally written by Dr. Leo J. Schneider, who wrote NYSML contests
from 2001 until his death in 2010. We include this problem to honor his memory.

I-10. We could simply substitute the values of the roots into the expression and simplify, but

consider the following. Notice that if x2 +x−1 = 0, then x− 1

x
= −1. Thus, x2 +

1

x2
= 3 and

x4 +
1

x4
= 7. Finally, notice that

Å
x2 − 1

x2

ã2

=

Å
x4 +

1

x4

ã
−2 = 7−2 = 5, so x2− 1

x2
= ±
√

5.

Therefore,
x2

x4 − 1
=

1

x2 − 1
x2

=
1

±
√

5
= ±
√

5

5
.



Power Question 2014: Numbers of Various Sizes

In this question you will explore an extension of the real number system R, called R∗. The elements
(numbers) of R∗ are rational numbers; that is, t = t(x) ∈ R∗ if t = P (x)/Q(x) where P and Q are
polynomials and Q is not identically 0. Since r ∈ R can be expressed as the rational function r/1,
every real number is an element of R∗.

We define an order on R∗ by a < b if there is a positive integer N such that x > N ⇒ a(x) < b(x).
Thus, for example, 1000x < x2 since x > 1000 ⇒ 1000x < x2. A number s is called positive small
if 0 < s < r for every real r > 0. Similarly, ` is positive large if ` > r for every real r > 0. Similar
definitions hold for negative small and negative large numbers. Note that R has no small or large
numbers. Non-zero numbers in R∗ that are not small or large are called medium. An example of a
small number is 1/x since if N > 1/r and x > N , 1/x < r. Since this holds for any r, 1/x is small.
Similarly, x is large. Two numbers a and b are equivalent, written a ≡ b, if a− b is small. It is easily
shown that all small numbers are equivalent to each other and all small numbers are equivalent to 0.

In this question, s, s1, s2, and so on, will refer to small numbers, with similar conventions holding
for ` (large numbers) and m (medium numbers). Many of the questions below can be handled by
carefully using the definitions.

P-1. Show that 1/xn is small for any positive integer n. [3 pts]

P-2. Show that xn is large for any positive integer n. [3 pts]

P-3. R is called Archimedian because for any positive a and b, no matter how small a is and no
matter how large b is, there is a positive integer n such that an > b. Show that R∗ does not
have this property if a is small and b is medium. [4 pts]

P-4. Prove that R∗ has the following properties:

a. s1 + s2 is small. [3 pts]

b. s1 · s2 is small. [3 pts]

c. `1 + `2 is large. [3 pts]

d. `1 · `2 is large. [3 pts]

e. m · s is small. [3 pts]

f. m+ s is medium. [5 pts]

P-5. Show by example that the product of a large number and a small number can be large or
small or medium. [3 pts]

P-6. A function f(t) is called continuous at a if f(a+ s) ≡ f(a). Show that f(t) = t2 is continuous
at all medium numbers. [4 pts]

P-7. Show by example that f(t) = t2 may be discontinuous at a large value of t. [3 pts]
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P-8. We define the derivative of f(t), written f ′(t), as f ′(t) =
f(t+ s)− f(t)

s
. Show that if

f(t) = t2, f ′(t) ≡ 2t. [3 pts]

P-9. Show that sin(s) ≡ s. You may use the fact that if t is in radians, lim
t→0

sin t

t
= 1, which means

that for every ε > 0 there is a δ > 0 such that 0 < |t| < δ ⇒ | sin t
t
− 1| < ε. [3 pts]

P-10. Show that (sin(t))′ = cos(t). Recall that sin(x + y) = sin(x) cos(y) + cos(x) sin(y). You may
assume that cos(s) ≡ 1. [4 pts]



Solutions to 2014 Power Question

P-1. For x > 1, 1/xn < 1/x. Thus, since 1/x is small, so is 1/xn.

P-2. For x > 1, xn > x, so xn is large.

P-3. Let a be small and let r be given. Since a is small, for every n there is an x such that a < r/n.
But then an < r/n× n = r, and this means that an is small and thus cannot equal b.

P-4. a. For any r there is an x such that s1 < r/2 and s2 < r/2. Then s1 + s2 < r/2 + r/2 = r
and s1 + s2 is small.

b. By definition of small, there is an x such that both s1 and s2 are less than
√
r. Thus,

s1s2 <
√
r
√
r = r, showing that s1 · s2 is small.

c. There is an x such that both l1 and l2 are greater than r/2, giving l1 + l2 > r and so
l1 + l2 is large.

d. There is an x such that both l1 and l2 are greater than
√
r, giving l1 · l2 > r and so l1 + l2

is large.

e. There is an x such that s < r/m, giving ms < r and so ms is small.

f. A number is medium positive if there is an r such that there is an N with the property
that for any x > N , m < r. Since s is small, there is an N such that for x > N , s < 1/2,
so that m+ s < m+ 1/2. Choosing r = m+ 1/2 shows that m+ s is medium.

P-5. If the large number is x and the small number is 1/x2, then their product is 1/x which is
small. If the large number is x2 and the small is 1/x, their product is x which is large. If the
large number is x and the small number is 1/x, their product is 1 which is medium.

P-6. We have (t + s)2 = t2 + 2ts + s2. If t is medium, then ts is small, and s2 is always small,
so ts + s2 is small. But then t2 and (t + s)2 differ by a small number, showing that t2 is
continuous at medium numbers.

P-7. As in part P-5, if t is large, ts may not be small and thus the difference between t2 and (t+s)2

may not be small.

P-8. We have
f(t+ s)− f(t)

s
=
t2 + 2ts+ s2 − t2

s
=

2ts+ s2

s
= 2t+ s ≡ 2t.

P-9. By the definition of limit, for every ε > 0 there is a δ > 0 such that 0 < |t| < δ ⇒ | sin t
t
−1| < ε.

By definition of small, |s| < δ for every δ. Then | sin s
s
− 1| < ε for every ε. In other words,

| sin s
s
− 1| is small. Thus,

sin s

s
≡ 1 or sin(s) ≡ s.

P-10. We have
sin(t+ s)− sin(t)

s
=

sin(t) cos(s) + cos(t) sin(s)− sin(t)

s
=

sin t(cos s− 1) + cos t sin s

s
.

This is equivalent to
sin t · 0 + cos t sin s

s
≡ cos t.
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R1-1. Egyptians wrote fractions of the form a
b

where a 6= 1 as the sum of unit fractions. The fraction
7
26

can be written as 1
K

+ 1
M

for positive integers K and M with M ≥ K in exactly one way.
Compute K +M .

R1-2. Let N be the number you will receive. Let k be the greatest positive integer for which N
2k

is
an integer. A triathlete swims 2 miles in 2 hours, runs 10 miles in 75 minutes, and bikes 38
miles in k hours. His average speed is A miles per hour. Compute bAc, the greatest integer
less than or equal to A.

R1-3. Let N be the integer you will receive. Compute the number of integer solutions to the system
|x− 3| ≤ 3N and |x+ 1| > N .

R2-1. Given x and y are positive integers. In 4ABC, m∠A = (2x)◦, m∠B = (3x + 5)◦, and
m∠C = y◦. Compute the number of distinct values of x for which 4ABC is scalene.

R2-2. Let N be the positive number you will receive. Let K =
N

3
+ 4. Mr. Regular K-gon says

to Mr. Isosceles Triangle (all of whose angles have integer degree measures), “Any of my
interior angles are 100 degrees greater than 4 times the measure of your acute vertex angle
V .” Compute V .

R2-3. Let N be the number you will receive. In isosceles triangle ABC, m∠A = k · m∠B, where
k and m∠B are integers and k > 1. Let S denote the sum of the measures of a base angle
and the corresponding vertex angle of 4ABC. Compute the number of distinct non-similar
triangles ABC for which S > 7 ·N .
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R1-1. 56

R1-2. 8

R1-3. 32

R2-1. 33

R2-2. 14

R2-3. 17
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R1-1. Notice that 7
26

is just greater than 1
4
. So, suppose that 7

26
= 1

4
+ 1

M
⇒ 1

M
= 7

26
− 1

4
= 14−13

52
= 1

52
.

Thus, K +M = 4 + 52 = 56.

R1-2. Our triathlete covers 50 miles in k + 3.25 hours. His average speed A is 50
k+3.25

= 200
4k+13

mph.

Now, substitute the value of k, which we obtain by recognizing that 56
23

is an integer but 56
24

is
not, so k = 3. Therefore, A = 200

25
= 8. Pass back 8.

R1-3. While we’re waiting for numbers to come back, let’s examine cases. We note that the system
only has solutions if N > 2. The solution is [3− 3N,−N − 1) ∪ (−1 +N, 3 + 3N ]. If N = 3,
there are 12 such integers. If N = 4, there are 16 such integers. If N = 5, there are 20 such
integers. In fact, there are always 4N such integers. Substituting, we have 4(8) = 32.

R2-1. We have 5x + 5 + y = 180 which implies y = 175 − 5x = 5(35 − x), so x can be any integer
from 1 through 34 inclusive. However, 4ABC cannot be equilateral or isosceles. Assume
∠A ∼= ∠B; this is impossible, since 2x = 3x+ 5→ x = −5. Assume ∠A ∼= ∠C; since y = 2x,
we have 7x + 5 = 180 → x = 25. Thus, x cannot be 25. Now, assume ∠B ∼= ∠C; since
y = 3x+ 5, we have 8x+ 10 = 180→ x = 85/4, which is not an integer. Therefore, there are
34− 1 = 33 possible scalene triangles.

R2-2. Let A be the measure of any angle in the regular K-gon. Then A = 4V + 100 → V =

A− 100

4
=

(K−2)(180)
K

− 100

4
=

80K − 360

4K
= 20 − 90

K
. Thus, K must be a factor of 90 =

21 · 32 · 51. That means there are (1 + 1)(2 + 1)(1 + 1) = 12 factors, but K = 1 and K = 2 are
physically impossible. K = 3 results in a negative value of V , leaving 9 ordered pairs (K,V ).
Since N = 33, K = 15, and so V = 14.

R2-3. Let m∠B = x. If B is the vertex angle, then (2k + 1)x = 180 → x = 180
2k+1

. Since 2k + 1
is odd, we are looking for an odd factor of 180 and there are six possibilities: 1, 3, 5, 9,
15, and 45. Two of these (1 and 3) correspond to k = 0 and k = 1, so there are four
physical triangles represented, with S = 108 or 100 or 96 or 92. If B is a base angle, then
(k + 2)x = 180→ x = 180

k+2
. 180 has 18 factors, but 1, 2, and 3 are off the table since k must

be greater than 1. The remaining 15 values give rise to 15 isosceles triangles different from
the four already found (that proof is up to the reader). There are 19 possible sums, but 2 of
them are less than 7 · 14 = 98, so we have 19− 2 = 17 distinct sums.
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TB-1. In a certain country called NYSMLand, there are only three kinds of currency, the 3-nysml
bill, the 5-nysml bill, and the 15-nysml bill. Toni buys a car in NYSMLand, and the car costs
1500 nysmls. She could pay for her car in many different ways. One way is to pay with 500
3-nysml bills. Another is to pay with 50 15-nysml bills and 150 5-nysml bills. Compute the
number of distinct ways in which she could pay for her car.

TB-2. The sum 1! + 2! + 3! + · · · + n! + · · · + 2014! is written as a base-ten numeral. The numeral
ends in the two digits AB. Compute the two-digit numeral AB.
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TB-1. 5151

TB-2. 13
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TB-1. This problem is analogous to finding whole number solutions to 3x+5y+15z = 1500. Since 5,
15, and 1500 are each divisible by 5, 3x must also be divisible by 5, so x must be divisible by
5. Similarly, 5y must be divisible by 3, so y must be divisible by 3. Therefore, there exist X
and Y such that 15X + 15Y + 15z = 1500, which is equivalent to X +Y + z = 100. There areÇ

102

2

å
ways to solve this over the whole numbers. Note: when you go home, Google “Balls

and Urns”! The answer is
102 · 101

2
= 5151.

TB-2. For n ≥ 10, the last two digits of n! are 00. We must add only 1! through 9!, keeping track of
only the last two digits. We add 01 + 02 + 06 + 24 + 20 + 20 + 40 + 20 + 80 = ...13. The last
two digits are 13.

This is a “NYSML Classic”. It is very much like question T5 from NYSML1979. Good
problems are timeless!
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2015 Team Problems

T-1. For two positive numbers x and y, we define their arithmetic mean as
x+ y

2
, their geometric

mean as
√
xy, and their harmonic mean as

2
1
x

+ 1
y

. Suppose that two positive numbers have

a geometric mean of 24 and a harmonic mean of 22. Compute their arithmetic mean.

T-2. If (x+ 2z) : (2y + z) : (2x+ y) = 1 : 3 : 5 and x+ y + z = 18, compute the value of z.

T-3. There are 52 balls in a box. Each ball has a number. Four of the balls are numbered 0, four are
numbered 1, and so on, such that the highest number on a ball is 12 (and this occurs for four
balls). Three balls are chosen from the box without replacement. Compute the probability
that at least one ball will have a two-digit number.

T-4. The perimeter of regular dodecagon DISCOUNTABLE is 60. Compute its area in the form
a+ b

√
c, where a, b, and c are integers, and c cannot be divided by the square of any prime.

T-5. Define an up-down integer as a five-digit natural number d1d2d3d4d5 where 0 < d1 < d2 < d3

and d3 > d4 > d5. The least up-down integer is 12310 and the greatest is 78987. Compute
the number of base-10 up-down integers.

T-6. Compute the ordered triple of positive integers (a, b, c) such that

(
√

2 +
√

5−
√

7)(15
√
a+ 6

√
b+ 3

√
c) = 60.

T-7. Suppose that Priority Mail delivery costs $5.60 and I want to use up stamps that I already
have to pay the postage. I have large quantities of 3-cent, 34-cent, 39-cent, and 42-cent stamps
in my desk. Compute the minimum number of stamps I could use to pay the $5.60 charge.

T-8. In trapezoid ABCD, bases AB and CD have lengths 15 and 20 respectively. Points E and
F are on AD and BC respectively such that EF ‖ AB. If AE : ED = 2 : 3, compute EF .
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T-9. The equation
n∑
j=0

ÇÇ
n

j

å
aj

å
= (n+ 1)2 generates a system of equations for non-negative in-

tegers aj and for integers n satisfying 0 ≤ n ≤ 2015. Some of the 2016 equations in this
system are 1a0 = 1, 1a0 + 1a1 = 4, 1a0 + 2a1 + 1a2 = 9, 1a0 + 3a1 + 3a2 + 1a3 = 16, and
1a0 + 4a1 + 6a2 + 4a3 + 1a4 = 25. Compute the sum a0 + a1 + a2 + ...+ a2015.

T-10. Circles C1, C2, and C3 have radii r1 = 1, r2 = 3, and r3 = 5 respectively. Circles C1 and C3

are externally tangent to circle C2 at points P and Q, respectively. Chord MN is drawn in
C3 perpendicular to line PQ at point R (where R is on line PQ). The lengths MN and C3R
are both integers. Compute C1M such that 4C1MN has maximum perimeter.

 

.

.

.

C1

C2

C3

.

.Q

P
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T-1.
288

11

T-2. −2

T-3.
47

85

T-4. 150 + 75
√

3

T-5. 2142

T-6. (2, 5, 70)

T-7. 14

T-8. 17

T-9. 6

T-10.
√

241
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T-1. Let the two numbers be x and y. Then xy = 242 and
2xy

x+ y
= 22. Thus,

x+ y

2
=
xy

22
=

288

11
.

T-2. Let x+2z = r, 2y+z = 3r, and 2x+y = 5r. Adding these three equations yields 3(x+y+z) =
9r. Substituting x + y + z = 18 yields r = 6. Subtract 2y + z = 18 and x + y + z = 18 to
obtain x = y. Solving now gives us x = y = 10 and z = −2.

T-3. The desired probability is equal to 1 minus the probability of not drawing any ball with a

two-digit number. This is 1−

Ç
40

3

åÇ
52

3

å = 1− 40! · 3! · 49!

3! · 37! · 52!
= 1− 40 · 39 · 38

52 · 51 · 50
, which simplifies to

1− 38

85
=

47

85
.

T-4. The regular 12-gon can be decomposed into 12 congruent isosceles triangles, and each of them
can be bisected into right triangles by dropping the altitude from the vertex angle to the base.
Let r represent the distance from the center of the 12-gon to the base angle of those isosceles
triangles. Then, the right triangles have legs of length r sin(15◦) and r cos(15◦) (the latter is

the altitude). From the perimeter, we know that r sin(15◦) =
5

2
, or r =

10√
6−
√

2
. The area

of each right triangle is 1
2
(r sin(15◦))(r cos(15◦)), making K, the area of the dodecagon, equal

to K = 12(r sin(15◦))(r cos(15◦)) = 6r2 sin(30◦) = 6

Å
10√

6−
√

2

ã2

· 1

2
, which is

300

8− 4
√

3
=

150 + 75
√

3.

T-5. Focus on d3. It is not possible for d3 to be 0 or 1 or 2. If d3 = 3, there is

Ç
2

2

å
= 1 choice for the

two digits on the left side of d3 and

Ç
3

2

å
= 3 choices for the two digits on the right side of d3. If

d3 = 4, there are

Ç
3

2

å
= 3 choices for the two digits on the left side of d3 and

Ç
4

2

å
= 6 choices

for the two digits on the right side of d3. This pattern continues, so that the desired answer isÇ
2

2

å
·
Ç

3

2

å
+

Ç
3

2

å
·
Ç

4

2

å
+· · ·+

Ç
8

2

å
·
Ç

9

2

å
= 1·3+3·6+6·10+10·15+15·21+21·28+28·36 =

2142.
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T-6. Rewrite the given equation as
3√

2 +
√

5−
√

7
=

15
√
a+ 6

√
b+ 3

√
c

20
. Then, rationalize

the denominator by first multiplying the numerator and denominator on the left side by

(
√

2 −
√

5 −
√

7) to obtain
3
√

2− 3
√

5− 3
√

7

4− 2
√

14
, and then rationalize this fraction to obtain

15
√

2 + 6
√

5 + 3
√

70

20
. The desired ordered triple is (2,5,70).

This is a “NYSML Classic”. It is very much like question T7 from NYSML1980. We think
it’s an oldie but a goodie!

T-7. Notice that 40 is approximately the average value of a stamp (forgetting about the 3-cent
stamps) so set 40 as the “target value” per stamp. This is especially useful since 40 divides
560. There are no 40-cent stamps, and each 42-cent stamp gives an “extra” 2 cents, so look
to balance groups. For example, three 42-cent stamps plus one 34-cent stamp cost $1.60 and
one 42-cent stamp and two 39-cent stamps cost $1.20. Can we use these groups to make a
supergroup of 14 stamps? Yes! Use two of each group to obtain stamps worth $5.60. Thus,
the minimum number of stamps required is 8 + 4 + 2 + 0 = 14.
Note: 14 stamps is minimal; if 13 or fewer stamps were to be used, the total amount could be
no more than 13 · $0.42 = $5.46.

T-8. Extend AD and BC to meet at G. Then, triangles AGB, EGF , and DGC are similar. Thus,

AG

AB
=

EG

EF
=

DG

DC
. Note that

EG

EF
=

AG

AB
=

EG− AG
EF − AB =

EA

EF − 15
and

DG

DC
=

EG

EF
=

DG− EG
DC − EF =

DE

20− EF . Therefore,
EA

EF − 15
=

DE

20− EF , or
EF − 15

20− EF =
EA

DE
=

2

3
, which

implies EF = 17.

Alternate Solution: Extend AD and BC to meet at G as before, and note the similarity
relations from the previous solution. Let AE = 2x so that ED = 3x and AD = 5x. Because

AB

CD
=

3

4
, conclude that

AG

DG
=

AG

AG+ 5x
=

3

4
, hence AG = 15x. Thus

AB

EF
=
AG

EG
=

15

15 + 2
,

and because AB = 15, it follows that EF = 17.

T-9. If n ≥ 3, the value of an must be 0 because

Ç
n

j

å
has a nj term that will need to cancel. So,

suppose that a0

Ç
n

0

å
+ a1

Ç
n

1

å
+ a2

Ç
n

2

å
= a0(1) + a1(n) + a2(1

2
n2 − 1

2
n) = n2 + 2n+ 1. For

this to be an identity, a2 = 2. Now, a0(1) + (a1 − 1)n + n2 = n2 + 2n + 1, so a1 = 3, and
a0 = 1. This confirms that an = 0 for n ≥ 3 and the sum is 1 + 3 + 2 + 2012(0) = 6.
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T-10. Let chord MN be a diameter of C3. Then, C1C3 = 1+2(3)+5 = 12 and C3M = 5→Perimeter
= 2(13) + 10 = 36. Can the perimeter be larger and MN and C3R still be integers?

If MN moves closer to C1, the perimeter of 4C1MN gets smaller. So consider the case
where MN moves away from C1. Because MN and C3R are integers, the solutions (a, b) to
a2 + b2 = 52 must be integral. Notice that the only positive integral solutions to a2 + b2 = 52

are (3, 4) and (4, 3).

 

.

.

.M N

C1

C2

C35
a

bM' N'

.

.Q

P

R

If a = 3, then C1M
′ =
√

42 + 152 =
√

241→Perimeter = 8 + 2
√

241.
If a = 4, then C1M

′ =
√

32 + 162 =
√

265→Perimeter = 6 + 2
√

265.
Is either of these values greater than 36? Since 152 = 225 and 162 = 256, 2

√
241 + 8 >

2(15) + 8 = 38. Is 2
√

265 + 6 > 2
√

241 + 8? If this were true, then this would be equivalent to
√

265−
√

241 > 1, which in turn is equivalent to
265− 241√
265 +

√
241

=
24√

265 +
√

241
> 1. But the

latter inequality is false because
24√

265 +
√

241
<

24√
225 +

√
225

=
24

30
< 1. Thus 2

√
265 + 6

must be less than 2
√

241 + 8. Therefore, the maximum perimeter of 4C1MN under these
conditions occurs when C1M =

√
241.



2015 Individual Problems

I-1. Given that 2015 is the least of 2015 consecutive integers, compute the mean of these 2015
integers.

I-2. Compute the number of positive integers less than or equal to 2015 that share no positive
factor with 2015 other than 1.

I-3. In the figure, ABCDEF is a regular hexagon. Some midpoints of sides are connected to form
a six-pointed star. Some of the hexagon is shaded. Compute the fraction of ABCDEF that
is shaded.

 

EF

A D

B C

I-4. Rectangle MATH is given, with MA = 4 and AT = 6. Equilateral triangles HIM and THE
are constructed such that segments MI, HI, TE, and HE are exterior to MATH. Compute
the area of 4AEI.

I-5. Compute the shortest distance from the graph of (x − 4)2 + (y − 2)2 = 4 to the point (7, 6).

I-6. The number 3372 = 113569 has 6 digits that are in non-decreasing order from left to right.
The decimal number equivalent to 333...372 has 2000 digits that also are in non-decreasing
order from left to right. Compute the sum of those 2000 digits.

I-7. A very long natural number is created by writing the first 2015 natural numbers in a string.
The number is 12345678910111213...20142015. Compute the 2015th (leftmost) digit of this
number.

98



2015 Individual Problems 99

I-8. In square ABCD, E is on AB and F is on BC such that DF is an angle bisector of ∠EDC.
Given that DE = 20 and AD = 15, compute AE + CF .

 

I-9. Consider a sequence {ni} for which n1 = 2, n2 = 0, n3 = 1, n4 = 5, n5 = 20, n6 = 15, and
ni = ni−1 − ni−2 + ni−3 − ni−4 + ni−5 − ni−6 for i ≥ 7. Compute n2015.

I-10. Compute the number of positive integers n such that n ≤ 2015 and n is divisible by b√nc,
which is the greatest integer not exceeding

√
n.



2015 Individual Answers

I-1. 3022

I-2. 1440

I-3.
3

4

I-4. 18 + 13
√

3

I-5. 3

I-6. 6007

I-7. 0

I-8. 20

I-9. −15

I-10. 131
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I-1. Represent the 2015 consecutive integers as x − 1007, x − 1006, · · · , x + 1006, and x + 1007.
The sum of the integers is 2015x, and their average is x. Since x − 1007 = 2015, x = 3022.

I-2. Note that 2015 = 5 · 13 · 31. There are 2015÷ 5 = 403 multiples of 5 which are not relatively
prime to 2015. Similarly, there are 2015 ÷ 13 = 155 multiples of 13 and 2015 ÷ 31 = 65
multiples of 31. Thus, the number of positive integers less than 2015 that are relatively prime
to 2015 is at least 2015− 403− 155− 65 = 1392. However, there are some numbers that have
been counted twice in the subtraction – namely, the 31 multiples of 65, the 13 multiples of
155, and the 5 multiples of 403. Thus, the number of positive integers less than 2015 that
are relatively prime to 2015 is at most 1392 + 31 + 13 + 5 = 1441. However, 2015 has been
discounted and recounted three times, and must be discounted. Our answer is 1440.

I-3. Draw diagonals AD, BE, and CF . The hexagon has now been divided into 24 congruent

equilateral triangles, 18 of which are shaded. The required ratio is
18

24
=

3

4
.

I-4. Note that each side of 4AEI is the longest side of a triangle whose other sides are 4 and 6

and whose included angle measures 150◦, so 4AEI is equilateral and its area is
(AI)2

√
3

4
.

Now, by the Law of Cosines, AI2 = 62 + 42− 2 · 6 · 4 · (−
√

3

2
), or AI2 = 52 + 24

√
3. Therefore,

[AEI] =
(52 + 24

√
3)
√

3

4
= 18 + 13

√
3.

I-5. Consider the distance from the center of the circle (4, 2) to the point (7, 6). This distance is√
(7− 4)2 + (6− 2)2 = 5. However, the segment between those two points includes a radius

of the circle, which has length 2. Therefore, the shortest distance between the circle and the
point (7, 6) is 5− 2 = 3.

I-6. Investigate the pattern: 3372 = 113569, 33372 = 11135569, 333372 = 1111355569, and so on,
so that if there are n 3’s in 333...3372, the resulting number has the form 1111...113555...569,
where there are n 1’s, a 3, n − 1 5’s, and a 69. To have 2000 digits, n = 999, and the digit
sum is 999(1) + 3 + 998(5) + 6 + 9 = 6007.

Incidentally, here is a proof that the pattern does indeed hold: 333...37 = 30(111...1) + 7.
Squaring, we obtain 900(111...1)2 (with n 1’s) +420(111...1) (with n 1’s) +49, which is
(111...1)[900(111...1) + 420] + 49 = (111...1)[1000...0320] + 49 (with n− 1 0’s). This is equal
to 111...1000...0 (with n 1’s and n+ 2 0’s) +333...300 (with n 3’s) +222...20 (with n 2’s) +49.
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This gives the desired sum.

Or, as another of our authors has pointed out, you could compute 10112, 100112, and so
on, and then divide each by 9 to obtain the desired numbers.

I-7. There are 9 one-digit numbers, 9 · 10 = 90 two-digit numbers, and 9 · 10 · 10 = 900 three-digit
numbers. The one-digit and two-digit numbers contribute 189 digits to the giant number.
There are 2015 − 189 = 1826 digits to be obtained from the three-digit numbers. Because
1826 = 3 · 608 + 2, we are looking for the second digit of the 609th three-digit number. The
609th number is 708, so the desired digit is 0.

I-8. In order to create a segment with length AE + CF , one possibility is to rotate the square
counterclockwise 90◦ about D. Let E ′ and F ′ be the images of E and F after the rota-
tion. If we let m∠ADE = α, then m∠EDF = m∠FDC = 45◦ − α/2, and m∠FDE ′ =
m∠FDC +m∠CDE ′ = (45◦ − α/2) + α = 45◦ + α/2.

 

Looking at right triangle DCF , notice that m∠DFC = 45◦ + α/2. Thus, 4DE ′F is
isosceles, which means DE ′ = E ′F = E ′C + CF . Because DE ′ = DE and E ′C = EA,
EA+ CF = DE = 20, and the length of DA was irrelevant to the solution of the problem.

Alternate Solution: Let CE = x and AE = a =
√

202 − 152 =
√

175 = 5
√

7. In
4DCF , let CF = b = 15 tan θ, where θ = m∠CDF . Using the Law of Cosines in 4DCE,
x2 = 202 + 152 − 2 · 20 · 15 cos 2θ. In 4BCE, x2 = (15− a)2 + 152. Equating and cancelling,
(15−a)2 = 400−600 cos 2θ. Substituting for a and reducing by 25, (3−

√
7)2 = 16−24 cos 2θ,

which implies 16 − 6
√

7 = 16 − 24 cos 2θ → cos 2θ =

√
7

4
= k. From the double-angle for-

mulas, we obtain sin2 θ =
1− k

2
and cos2 θ =

1 + k

2
, so tan2 θ =

1− k
1 + k

=
(4−

√
7)2

9
, so

tan θ =
4−
√

7

3
, and b = 5(4−

√
7)→ a+ b = 20.
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I-9. Look for a pattern. Let n1 through n6 be represented by a through f for convenience. Then,
n7 = f − e + d − c + b − a, n8 = (f − e + d − c + b − a) − f + e − d + c − b = −a, and
n9 = (−a)−(f−e+d−c+b−a)+f−e+d−c = −b. Similarly, n10 = −c, n11 = −d, n12 = −e,
n13 = −f , n14 = −n7, and n15 = n1, starting the pattern again. Since 2015 = 143 · 14 + 13,
n2015 = n13 = −n6 = −15.
This is a “NYSML Classic”. It is very much like question I7 from NYSML2005. Math never
goes bad!

I-10. Let f = b√nc. Because 442 = 1936 and 452 = 2025, the value of f is at most 44. Because
f ≤ √n < f+1, it is also true that f 2 ≤ n < f 2+2f+1. Because f is an integer, n is bounded
between f 2 and f 2 + 2f . There are only three multiples of f in this range: f 2, f 2 + f , and
f 2 + 2f . Thus, every positive integer f less than or equal to 44 generates 3 possible n values,
except for 44 (because 442 + 2 · 44 = 2024 > 2015). The desired answer is 3 · 44− 1 = 131.



Power Question 2015: Irregular Regular Polygons

The Regulars:

Recall that for any integer n ≥ 3 there exists a regular polygon having n sides with all sides
congruent and all internal angles congruent. For the purpose of this question, we assume that all
sides have length 1, making this (convex) polygon Rn unique for each n ≥ 3.

For any regular polygon R we define α(R) as the degree-measure of any internal angle of R.

P-1. a. Compute the areas of R3, R4, R6, and R8. [4 pts]

b. Provide an explicit formula (in terms of n) for α(Rn). [1 pt]

The Irregulars:

Consider the polygons P1 and P2 below. All of their sides have length 1, and for each of these
polygons all of the non-reflex angles are congruent, but some of these angles are internal and some
others are not. P1 and P2 are examples of Irregular Regular Polygons (IRPs).

Before we formally define an IRP, let’s consider any polygon P . As usual, we do not allow self-
intersecting polygons or polygons with overlapping vertices, but we do allow non-convex polygons.

Each vertex of P and two sides of P sharing this vertex form two angles. One of them is an internal
angle of P and the other one is the corresponding explementary angle. Note that exactly one of
these two angles is a reflex angle. Therefore, any polygon P with n vertices has n pairs of exple-
mentary angles, or 2n angles altogether – n reflex and n non-reflex ones.

A regular polygon could be defined as a convex polygon with all sides congruent and all non-
reflex angles congruent. Now, we define an IRP as a non-convex polygon with all sides congruent
and all non-reflex angles congruent. We continue to assume that all sides have length 1. Note that
regular polygons Rn, because they are convex, are not IRPs.

For any regular polygon R we could define α(R) as the degree-measure of any non-reflex angle
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of R. Similarly, if P is an IRP, we define α(P ) as the degree-measure of any non-reflex angle of P ,
the IRP.

P-2. a. Compute the perimeters and areas of P1 and P2. [4 pts]

b. Compute the least possible radius of a disk which fully covers P2. [1 pt]

P-3. a. Show that for every IRP P there exists an integer n ≥ 3 such that α(P ) = α(Rn). [3 pts]

b. Show that every IRP has at least four internal non-reflex angles. [2 pts]

The Families:

For any integer n ≥ 3 we define IRP-n as the set (family) of all IRPs P such that α(P ) = α(Rn).
The result of P3-a means that every IRP belongs to exactly one of these families. In the examples
above, P1 ∈ IRP-4 and P2 ∈ IRP-6.

Hint: To solve some of the problems below, it might be useful to take a look at an IRP along a
line parallel or perpendicular to one of the IRP’s sides.

P-4. a. Show that the family IRP-3 is empty. [1 pt]

b. Draw two IRPs, P3 ∈ IRP-4 and P4 ∈ IRP-6, which have neither a line of symmetry nor
a center of symmetry. [2 pts]

c. Draw two non-congruent IRPs, P5 and P6, having the same perimeters and the same
areas. [2 pts]

P-5. a. Prove that every IRP from IRP-n has n more internal non-reflex angles than internal
reflex angles. [2 pts]

b. Show that the perimeter of every IRP from IRP-n has the same parity as n. [1 pt]

c. Show that for every even integer p ≥ 10, there exists an IRP from IRP-6 with perimeter
p. [2 pts]

P-6. a. Show that the perimeter of every IRP from IRP-4 is at least 12. [1 pt]

b. Show that the perimeter of every IRP from IRP-n is at least n+ 2. [1 pt]

c. Show that the perimeter of every IRP from IRP-n is at least n+ 4. [3 pts]

P-7. a. Show that 2α(R5) + α(R10) = 360◦. [1 pt]

b. Draw an IRP from IRP-5 with perimeter 25. [2 pts]

c. Draw an IRP from IRP-5 with perimeter not equal to 25. [2 pts]

P-8. a. Prove that the perimeter of every IRP from IRP-5 is a multiple of 5. [3 pts]

b. Draw the unique IRP with the least possible perimeter. [2 pts]
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P-9. a. Show that the family IRP-6 contains infinitely many different (non-congruent) IRPs.
[1 pt]

b. Show that the family IRP-5 contains infinitely many different (non-congruent) IRPs.
[2 pts]

c. Show that for every integer n ≥ 4, the family IRP-n contains infinitely many different
(non-congruent) IRPs. [2 pts]

P-10. Prove that there exists an IRP with a prime perimeter. [5 pts]



Solutions to 2015 Power Question

P-1. a. The area of R3 is
√

3
4

. The area of R4 is 1. The area of R6 is 3
√

3
2

. The area of R8 is

2 + 2
√

2.

b. Note that α(Rn) = 180◦ n−2
n

= 180◦
(
1− 2

n

)
= 180◦ − 360◦

n
.

P-2. a. Note that P1 has perimeter 12 and area 5. Note also that P2 has perimeter 18 and area
15
√

3
2

.

b. The least possible radius is
√

7.

P-3. a. Let P be an arbitrary IRP, and N = IR(P ) + INR(P ) be its number of vertices. As for
any polygon with N vertices, the average degree-measure of an angle of P equals α(RN) <
180◦. One can pair as many reflex and non-reflex angles as possible (the average degree
measure of an angle in each pair of explementary angles equals 180◦). Any remaining
angles after pairing must be non-reflex (having degree measure less than 180◦) because
otherwise the average degree measure of an angle of P would be at least 180◦. Therefore,
INR(P ) ≥ IR(P ), and it follows that there are IR(P ) pairs of explementary angles and
N −@IR(P ) congruent non-reflex angles. Because the total degree measure of all angles
of P equals 180◦(N − 2), one obtains the following: 360◦IR(P ) + α(P )(N − 2IR(P )) =
180◦(N − 2), which is equivalent to α(P )(N − 2IR(P )) = 180◦(N − 2IR(P )− 2), which
is equivalent to (180◦ − α(P ))(N − 2IR(P )) = 360◦. Because 0◦ < α(P ) < 180◦, this
implies N − 2IR(P ) > 2. Let n = N − 2IR(P ), where n is a natural number greater
than or equal to 3. Then it follows that α(P ) = 180◦ n−2

n
. According to the answer from

P1-b, α(Rn) = 180◦ n−2
n

, and therefore α(P ) = α(Rn).

b. Let P be an arbitrary IRP, and N = IR(P ) + INR(P ) be its number of vertices. As
shown in P3-a-Sol, there exists n ≥ 3 where n = N − 2IR(P ) = IR(P ) + INR(P ) −
2IR(P ) = INR(P ) − IR(P ). Because the polygon P is non-convex, it follows that
IR(P ) ≥ 1, and therefore INR(P ) = n+ IR(P ) ≥ 4.

Alternatively, if INR(P ) ≤ 2, then IR(P ) ≥ N − 2, and the total degree measures
of all reflex angles of P is greater than 180◦(N − 2) (the total degree measure of all
angles of P ), which is a contradiction. If INR(P ) = 3, then IR(P ) = N − 3 > 0 (there
is no such figure as a non-convex triangle!), and the total degree measure of all reflex
angles of P is greater than 180◦(N − 3). But from the result of P3-a, there is an integer
n ≥ 3 such that α(P ) = α(Rn), and the answer to P1-b implies α(Rn) ≥ α(R3) = 60◦,
so the total degree measure of all non-reflex angles of P is at least 60◦(INR(P )) = 180◦,
and the total degree measure of all angles of P (which equals 180◦(N−2)) is greater than
180◦(N − 3) + 180◦ = 180◦(N − 2), which is a contradiction. Therefore, INR(P ) ≥ 4.

P-4. a. The answer to P1-b implies that α(R3) = 60◦. Start by drawing two segments of length
1 that make a 60◦ angle. The third segment of length 1 and the second segment should
also make a 60◦ angle. So either the third segment closes off the figure, creating an
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equilateral triangle, or the third segment is parallel to the first segment. Now, to avoid a
self-intersection, the fourth segment of length 1 must be parallel to the second segment,
and this pattern continues; therefore, the figure is not closed.

b. Examples are shown below.

c. Start from P3 and flip some U-shaped part of it consisting of three consecutive sides from
“inside” to “outside”, preserving the perimeter and increasing the area by 2. Flipping
one part creates P5, and flipping a congruent part in another place creates P6.

P-5. a. Let P be an arbitrary IRP from IRP-n and let N = IR(P ) + INR(P ) be its number of
vertices. Each non-reflex angle of P has degree measure α(P ) = α(Rn), and each reflex
angle of P has degree measure 360◦ − α(P ). Because the total degree measure of all
angles of P equals 180◦(N − 2), it follows that α(P )INR(P ) + (360◦ − α(P ))IR(P ) =
180◦(IR(P ) + INR(P ) − 2). The answer to P1-b implies that α(P ) = 180◦ − 360◦

n
;

therefore 360◦ − α(P ) = 180◦ + 360◦

n
, so simplify to obtain −INR(P )

n
+ IR(P )

n
= −1 ⇔

INR(P )− IR(P ) = n.

b. Let P be an arbitrary IRP from IRP-n and let N = IR(P ) + INR(P ) be its perimeter.
According to the result of P5-a, INR(P ) − IR(P ) = n, and therefore N = IR(P ) +
IR(P ) + n = 2IR(P ) + n is of the same parity as n.

c. One can draw an IRP from IRP-6 with perimeter 10 by (externally) attaching two in-
stances of R6 to each other and removing their shared side (we can assume it was a
vertical side). Attaching another instance of R6 to the rightmost vertical side of the
previous IRP and removing their shared side creates an IRP from IRP-6 with perimeter
10 + 4 = 14. Attaching another instance of R6 to the rightmost vertical side of the
previous IRP and removing their shared side creates an IRP from IRP-6 with perimeter
14 + 4 = 18. This pattern continues.
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One can also draw an IRP from IRP-6 with perimeter 12 by (externally) attaching
three instances of R6 to each other and removing their three partially-shared sides (we
can assume one of them was a vertical side). Attaching another instance of R6 to the
rightmost vertical side of the previous IRP and removing their shared side creates an
IRP from IRP-6 with perimeter 12 + 4 = 16. Attaching another instance of R6 to the
rightmost vertical side of the previous IRP and removing their shared side creates an
IRP from IRP-6 with perimeter 16 + 4 = 20. This pattern continues.

P-6. a. Let P be an arbitrary IRP from IRP-4. Assume that P has only horizontal and vertical
sides. Let x be one of the top horizontal sides of P . Two neighboring sides, w and y,
are vertical, and their neighboring sides, v and z, are horizontal. Neither of these two
horizontal sides appear directly below x to avoid a self-intersection.

So if one looks at P from above along a vertical line, one will see at least three different
horizontal sides (all of them differ from v, x, and z) not blocked by other sides. This
means that P has at least six different horizontal sides. Similarly, P has at least six
different vertical sides, and therefore its perimeter is at least 12.

b. Let P be an arbitrary IRP from IRP-n and let N = IR(P ) + INR(P ) be its perimeter.
From the result of P5-a, it follows that INR(P ) = n + IR(P ), so N = n + 2IR(P ).
Because polygon P is non-convex, it follows that IR(P ) ≥ 1 and therefore N ≥ n+ 2.

c. Assume there exists an IRP from IRP-n with perimeter N = IR(P ) + INR(P ) where
N < x+ 4. The result of P6-b implies that N ≥ n+ 2, and the result of P5-b implies
that N is of the same parity as n; therefore, N must be n + 2, and thus INR(P ) +
IR(P ) = n + 2. The result of P5-a implies INR(P ) − IR(P ) = n, so it follows that
INR(P ) = n + 1 and IR(P ) = 1. This means that P has n + 1 consecutive non-reflex
angles with degree measure α(P ) = α(Rn). Therefore n consecutive sides of P form Rn,
which is a contradiction.

P-7. a. The answer to P1-b implies that α(R5) = 108◦ and α(R10) = 144◦. Therefore, 2α(R5) +
α(R10) = 360◦.

b. Draw R10 and then on each of its sides place an instance of R5 (externally). The result
of P7-a implies that each of these ten regular pentagons will share a side with two
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neighboring regular pentagons. Now it is straightforward to highlight some of their sides
to get a required (flower-like) IRP from IRP-5 with perimeter 25 (at the right in the
figure below).

Alternatively, we can apply the vector-based method described in the solution to P7-c
to get another IRP from IRP-5 with perimeter 25 (shown below).

c. Consider the flower-like IRP, F , created in the solution to P7-b. One can obtain F by
starting from a regular pentagon, A, with side length 2 + a, where a is the length of any
diagonal of R5. Then, in each of its five angles, place an instance of R5. Consider the
ten vertices of these smaller regular pentagons which are inside A and connect them, as
shown in the diagram.

Finally, eliminate all sides of these smaller regular pentagons which are in the interior of
A as well as all “central” parts of the sides of A with length a. Notice that F consists of
five congruent parts, that each part consists of five sides of length 1, and that consecutive
parts join each other at the same angle as neighboring sides of R5 do. Now, take two
such parts, glue them together as shown below to get a new longer part with length 9,
and make a figure from five congruent longer parts joining them at the same angle as
the one between the shorter parts of F .

The result is an IRP from IRP-5 (any two consecutive sides of the resulting polygon are
consecutive sides of an instance of R5) and its perimeter will be 45, which is different
from 25.
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Alternate Solution: Start from a regular pentagon B with side length 3 + 2a where a is
the length of any diagonal of R5. Divide each side in the ratio 1 : a : 1 : a : 1. Then, in
each of its five angles, place an instance of R5, and also place an instance of R5 (inside B)
on the central part of every side of B. Consider the twenty vertices of these ten smaller
regular pentagons which are inside B and connect them, as shown.

Eliminate all sides of these smaller regular pentagons which are in the interior of B as
well as all parts of the sides of B with length a. The result is an IRP from IRP-5 (any
two consecutive sides of the resulting polygon are consecutive sides of an instance of R5)
and its perimeter will be 45, which is different from 25.

Alternate Solution 2: Consider how one can obtain P1 from R5, and then apply a similar
method to get some IRP from IRP-5 starting from R5. To begin, draw R4 and P1 with
horizontal and vertical sides, and consider their clockwise orientations (when traveling
on a polygon in a clockwise direction, the polygon’s interior would always be on the

right). Every side becomes a vector. Let −→a ,
−→
b , −→c , and

−→
d be the side-vectors of R4

(when traveling on it in a clockwise direction, the sides are in the order −→a ,
−→
b , −→c , and−→

d ). Consider the order of the sides when traveling on P1 in a clockwise direction: the

sides are in the order −→a ,
−→
b , −→a ,

−→
b , −→c ,

−→
b , −→c ,

−→
d , −→c ,

−→
d , −→a ,

−→
d . One can obtain

this sequence from the shorter sequence −→a ,
−→
b , −→c ,

−→
d by simultaneously replacing each

character with the corresponding 3-character sequence: −→a with −→a ,
−→
b , −→a ;

−→
b with

−→
b ,

−→c ,
−→
b ; −→c with −→c ,

−→
d , −→c ; and

−→
d with

−→
d , −→a ,

−→
d . This gives insight into how to create

an IRP from IRP-5.
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Draw R5 and consider its clockwise orientation. Every side becomes a vector. Let −→s ,
−→
t ,

−→u , −→v , and −→w be the side-vectors of R5 (when traveling on it in a clockwise direction,

the sides are in the order −→s ,
−→
t , −→u , −→v , and −→w ). Using the replacement method, we

obtain the 15-character sequence −→s ,
−→
t , −→s ,

−→
t , −→u ,

−→
t , −→u , −→v , −→u , −→v , −→w , −→v , −→w , −→s ,

−→w . Now, draw a figure which corresponds to this sequence. It will be a closed figure
(the vectors −→s ,

−→
t , −→u , −→v , and −→w sum to a zero vector because R5 is a closed figure,

and therefore all fifteen vectors in the sequence will sum to a zero vector) which is not
self-intersecting. The result is an IRP from IRP-5 (all of its sides will have length 1, and
any two of its neighboring side-vectors appear as the neighboring side-vectors in R5) and
its perimeter will be 15, which is different from 25.

Note that if we start from the sequence −→s ,
−→
t , −→u , −→v , −→w and simultaneously replace each

character with a 5-character sequence similar to the one described above (for example,

replacing −→s with −→s ,
−→
t , −→s ,

−→
t , −→s ), one obtains a 25-character sequence. The figure that

corresponds to that sequence will be an IRP from IRP-5 with perimeter 25, representing
an alternative solution to P7-b.

P-8. a. Let P be an arbitrary IRP from IRP-5, and N its perimeter. Draw R5 and P with
the corresponding sides parallel, and consider their clockwise orientations. Every side
becomes a vector. Let −→s ,

−→
t , −→u , −→v , and −→w be the side-vectors of R5 in clockwise

order. Assume that the distinct side-vectors of P are also −→s ,
−→
t , −→u , −→v , and −→w (and

if they have opposite directions we can reflect P over any of its sides). Let S, T , U , V ,

and W be the (integer) number of the side-vectors of P which are equal to −→s ,
−→
t , −→u ,

−→v , and −→w respectively. Then it follows that S + T + U + V + W = N , and the sum
S−→s + T

−→
t + U−→u + V−→v +W−→w equals the zero vector. Consider P along a line parallel

to its side-vector −→w ; that is, project all the vectors onto a line parallel to the side-vector
−→w .
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It follows that S cos 18◦ + T cos 54◦ − U cos 54◦ − V cos 18◦ = 0. Using the fact that
cos 54◦ = sin 36◦ = 2 cos 18◦ sin 18◦ and the fact that cos 18◦ 6= 0, it follows that
(S − V ) + 2(T − U) sin 18◦ = 0. If T 6= U , then it follows that sin 18◦ is a rational
number, and this results in a contradiction. Therefore T = U . Similarly, it follows that
U = V , V = W , and W = S, so N = S + T + U + V +W = 5S is a multiple of 5.
Note that sin 18◦ = cos 72◦, so if sin 18◦ = x for some x with 0 < x < 1, then
cos 36◦ = cos(2 ·18◦) = 1−2x2 and cos 72◦ = cos(2 ·36◦) = 2(1−2x2)2−1 = 8x4−8x2 +1,
so one obtains 8x4 − 8x2 + 1 = x ↔ 8x2(x2 − 1) = x − 1. Because x 6= 1, this implies
8x2(x + 1) = 1 ↔ (2x + 1)(4x2 + 2x − 1) = 0. Because x > 0, take the positive root

of the quadratic equation 4x2 + 2x − 1 = 0, which implies sin 18◦ =
√

5−1
4

and therefore
sin 18◦ is irrational.

b. Let P be an arbitrary IRP from IRP-n, and let N be its perimeter. According to the
result of P4-a, n ≥ 4. If n = 4 then according to the result of P6-a, N ≥ 12. If n = 5,
then according to the results of P5-b and P8-a, N is an odd multiple of 5, and therefore
N ≥ 15. If n ≥ 7, then according to the result of P6-c, N ≥ n+ 4 ≥ 11. If n = 6, then
according to the result of P6-c, N ≥ 10. According to the result of P5-c, there exists
an IRP from IRP-6 with perimeter 10. Therefore the least possible perimeter of an IRP
is 10. The diagram contains an IRP with perimeter 10.

Such an IRP is indeed unique. As explained above, if an IRP P has perimeter 10, then
it must be from IRP-6. According to the result of P5-a, INR(P ) − IR(P ) = 6, but
IR(P ) + INR(P ) = 10, so it follows that INR(P ) = 8 and IR(P ) = 2. If P has five
consecutive non-reflex angles with degree measure α(P ) = α(R6), then six consecutive
sides of P form Rn, which results in a contradiction. Therefore, eight non-reflex angles
of P are split into two groups of four consecutive non-reflex angles, so when traveling
on P in any direction the angles are in the following order (starting from a reflex one):
reflex, non-reflex, non-reflex, non-reflex, non-reflex, reflex, non-reflex, non-reflex, non-
reflex, non-reflex. According to the answer to P1-b, all non-reflex angles of P measure
120◦, and therefore all reflex angles of P measure 240◦. Because all sides of P have length
1, P is fully and uniquely (up to a congruency) defined by the above sequence of its ten
consecutive angles.

P-9. a. According to the result of P5-c, for every even integer p ≥ 10 there exists an IRP from
IRP-6 with perimeter p. Consider any IRP from IRP-6 with perimeter 10, any IRP from
IRP-6 with perimeter 12, and so on. All of these IRPs are non-congruent because they
have different perimeters, and there are infinitely many of them.
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b. Any of the solutions of P7-c above could be generalized to provide a method of generating
infinitely many IRPs from IRP-5 with different perimeters. All of these IRPs are non-
congruent because they have different perimeters.
The generalization of the first (or the second) solution of P7-c allows for any positive
integer p to create an IRP from IRP-5 with perimeter 5(4p + 1). For details, check the
explanation and diagrams in the solution to P9-c.
The vector-based solution of P7-c is the easiest one to generalize. For any odd integer p
greater than 2 we can create a (5p)-character sequence and draw the corresponding IRP
from IRP-5 with perimeter 5p.

c. Any of the solutions of P7-c requires the case where n = 4 to be considered separately.
This could be done by starting from P1 and keep extending it to the right similarly to
what has been done in the solution to P5-c.

If n ≥ 5, start from a regular n-gon A with side length 2 + a, where a is the length of
any diagonal of Rn which makes a trapezoid together with three consecutive sides of Rn.
Then in each of its n angles place an instance of Rn. Consider the 2n vertices of these n
smaller regular n-gons which are inside A and have one of their neighboring vertices on
A, and connect them as shown in the diagram (note that in the diagram, n = 8).

Finally, eliminate all sides of these smaller regular n-gons which are in the interior of A as
well as all “central” parts of the sides of A with length a. One can see that the resulting
IRP, F , consists of n congruent parts, that each part consists of 5 sides of length 1, and
that consecutive parts join each other at the same angle as neighboring sides of Rn do.
Now, for any positive integer p, take p such parts and glue them together as shown in
the diagram to get a new longer part with length pn− (p− 1), and make a figure from
n congruent longer parts joining them at the same angle as the one between the shorter
parts of F (note that in the diagram, p = 2).

We get an IRP from IRP-n (any two consecutive sides of the resulting polygon are
consecutive sides of an instance of Rn), and its perimeter will be n(pn− (p− 1)).
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Alternatively, choose a positive integer p and start from a regular n-gon, B, with side
length p + 1 + pa, where a is the length of any diagonal of Rn which makes a trapezoid
together with three consecutive sides of Rn, and divide each side in a ratio of 1 : a : 1 :
a : . . . : a : 1 : a : 1. Then in each of its n angles place an instance of Rn, and also place
an instance of Rn (inside B) on any non-corner part of length 1 of every side of B (in the
diagram n = 8 and p = 2). Consider the 2pn vertices of these pn smaller regular n-gons
which are inside B and have one of their neighboring vertices on B, and connect them
as shown in the diagram.

Finally, eliminate all sides of these smaller regular n-gons which are in the interior of B,
as well as all parts of the sides of B with length a. We get an IRP from IRP-n (any two
consecutive sides of the resulting polygon are consecutive sides of an instance of Rn),
and its perimeter will be n(pn–(p–1)). The vector-based solution of P7-c is the easiest
one to generalize. For any odd integer p greater than 2 we can create a (pn)-character
sequence and draw the corresponding IRP from IRP-n with perimeter pn.

P-10. All the solutions of P7-c above produce IRPs with composite perimeters, but any of these
solutions could be modified to produce an IRP with a prime perimeter. We will provide a
modification of the vector-based solution.
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In the vector-based solution of P9-c we started with an n-character sequence, took an odd
integer p greater than 2, and replaced each character in the sequence with a p-character
sequence to produce a (pn)-character sequence that corresponded to an IRP with perimeter
pn. To produce an IRP with a prime perimeter using a similar approach, we cannot replace
all characters in the original n-character sequence. But replacing only some characters may
lead to a character sequence which does not correspond to a polygon (we may end up with a
non-closed figure, i.e. the end of the last vector may not coincide with the beginning of the
first vector). But if the vectors we are going to add to the sequence sum up to a zero vector,
the new sequence will produce a polygon (formally, we will only avoid the non-closing issue;
a self-intersection may also become an issue in some cases, but in our specific case below, it
will not). Since we always add an even number of characters, we need to use an odd n. To
be able to easily add some, but not all, available vectors that sum up to a zero vector, we
can take an odd composite n. If n = 9, we will always add a number of vectors which is a
multiple of 3, so the number of characters in the resulting sequence will also be a multiple of
3. The next possible value of n is 15 (a product of the two smallest distinct odd primes).
Everything in the above paragraph was just a hint to the actual solution. Let’s draw R15 and

consider its clockwise orientation. Every side becomes a vector. Let −→a ,
−→
b , −→c ,

−→
d , −→e ,

−→
f ,

−→g ,
−→
h ,
−→
i ,
−→
j ,
−→
k ,
−→̀

, −→m, −→n , and −→o be the side-vectors of R15 (when traveling on it in a

clockwise direction, the sides are in the order −→a ,
−→
b , −→c ,

−→
d , −→e ,

−→
f , −→g ,

−→
h ,
−→
i ,
−→
j ,
−→
k ,
−→̀

,
−→m, −→n , and −→o ). These 15 vectors sum up to a zero vector since R15 is a closed figure. Note

that due to symmetry vectors −→a ,
−→
f , and

−→
k could serve as side-vectors of R3 (and therefore

they sum up to a zero vector), and vectors −→a ,
−→
d , −→g ,

−→
j , and −→m could serve as side-vectors

of R5 (and therefore they sum up to a zero vector). The same is true for vectors
−→
b , −→g ,

−→̀

and
−→
b , −→e ,

−→
h ,
−→
k , −→n , respectively. So we start from the 15-character sequence −→a ,

−→
b , −→c ,−→

d , −→e ,
−→
f , −→g ,

−→
h ,
−→
i ,
−→
j ,
−→
k ,
−→̀

, −→m, −→n , −→o and simultaneously replace each of the characters
−→a ,
−→
f , and

−→
k with the corresponding 3-character sequences: −→a with −→a ,

−→
b , −→a ;

−→
f with

−→
f ,

−→g ,
−→
f ; and

−→
k with

−→
k ,
−→̀

,
−→
k . After replacing we obtain the 21-character sequence −→a ,

−→
b ,

−→a ,
−→
b , −→c ,

−→
d , −→e ,

−→
f , −→g ,

−→
f , −→g ,

−→
h ,
−→
i ,
−→
j ,
−→
k ,
−→̀

,
−→
k ,
−→̀

, −→m, −→n , −→o which corresponds to
an IRP from IRP-15 with perimeter 21. Note that these 21 vectors sum up to a zero vector.

Now we simultaneously replace one of the characters −→a , character
−→
d , one of the characters

−→g , and characters
−→
j and −→m with the corresponding 3-character sequences: −→a with −→a ,

−→
b ,

−→a ;
−→
d with

−→
d , −→e ,

−→
d ; −→g with −→g ,

−→
h , −→g ;

−→
j with

−→
j ,
−→
k ,
−→
j ; and −→m with −→m, −→n , −→m. After

replacing we obtain either the 31-character sequence −→a ,
−→
b , −→a ,

−→
b , −→a ,

−→
b , −→c ,

−→
d , −→e ,

−→
d , −→e ,−→

f , −→g ,
−→
h , −→g ,

−→
f , −→g ,

−→
h ,
−→
i ,
−→
j ,
−→
k ,
−→
j ,
−→
k ,
−→̀

,
−→
k ,
−→̀

, −→m, −→n , −→m, −→n , −→o or the 31-character

sequence −→a ,
−→
b , −→a ,

−→
b , −→a ,

−→
b , −→c ,

−→
d , −→e ,

−→
d , −→e ,

−→
f , −→g ,

−→
f , −→g ,

−→
h , −→g ,

−→
h ,
−→
i ,
−→
j ,
−→
k ,
−→
j ,−→

k ,
−→̀

,
−→
k ,
−→̀

, −→m, −→n , −→m, −→n , −→o . Each of them corresponds to an IRP from IRP-15 with the
prime perimeter 31 (see the diagram). Note that these 31 vectors sum up to a zero vector.
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2015 Relay Problems

R1-1. Compute the two-digit number that is equal to one more than three times the sum of its
digits.

R1-2. Let N be the two-digit prime you will receive. The four-digit number Y = 2 0P Q is divisible
by N . Compute the number of distinct possible values of Y .

R1-3. Let N be the number you will receive. The solutions of x3 − 4x2 + 6x−N = 0 are p, q, and r.
Compute the value of (p+ q)(p+ r)(q + r).

R2-1. Compute the whole number that is 29760 less than its cube.

R2-2. Let N be the number you will receive. Sam has N coins, each of which is either a nickel or a
quarter. The total value of the N coins is $5.75. Compute the number of nickels Sam has.

R2-3. Let N be the number you will receive. If Susie stands on the up escalator and rides it from the
first floor to the second floor, the trip takes 12 seconds. If instead Susie walks up a parallel
staircase from the first floor to the second floor, the trip takes N seconds. If Susie walks up

the up escalator from the first floor to the second floor, the trip takes
A

B
seconds, where A

and B are positive integers whose greatest common factor is 1. Compute A+B.
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R1-1. 13

R1-2. 8

R1-3. 16

R2-1. 31

R2-2. 10

R2-3. 71
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R1-1. Let the two-digit number T U be expressed as 10T + U . Then, we seek to solve 10T + U =

1 + 3(T + U)⇒ 7T = 2U + 1. If T = 1, then U =
7− 1

2
= 3. If T > 1, then U is not a digit.

Therefore, the only two-digit number satisfying the criterion is 13.

R1-2. Since 2015 = 5 ·13 ·31, it is true that 2015 is one such number, and therefore so is 2015−13 =
2002. Adding 13 until the numbers exceed 2099 yields 2028, 2041, 2054, 2067, 2080, and 2093,
for a total of 8 possible values of Y .

R1-3. Note that the sum of the roots is p + q + r = 4, so p + q = 4 − r and p + r = 4 − q and
q + r = 4− p. Note also that the cubic equation can be written as (x− p)(x− q)(x− r) = 0.
Therefore, the desired quantity is f(4), which is 64− 64 + 24− 8 = 16.

R2-1. The equation to solve is x3 − x = 29760 → x(x + 1)(x − 1) = 29760. Factoring yields
x(x+ 1)(x− 1) = 26 · 3 · 5 · 31 = 30 · 31 · 32. Therefore, x = 31.

R2-2. Let x be the number of nickels. Then 5x+ 25(N − x) = 575→ x =
5N − 115

4
. Substituting,

x = 10.

R2-3. Let the distance from the first floor to the second floor be d. Then, the escalator moves at a
rate of d

12
while Susie walks at a rate of d

N
. If Susie walks up the up escalator, this trip takes

time given by
d

d
12

+ d
N

=
12N

N + 12
. Substituting N = 10 and reducing, we obtain

60

11
. The

desired sum is 60 + 11 = 71.

120



2015 Tiebreaker Problems

TB-1. In parallelogram MATH, MA = 11 and AT = 9. In parallelogram TIME, TI = 13 and
MI = 17. VerticesA andH ofMATH trisect diagonal IE of TIME. Compute the length IE.

TB-2. The three-digit octal (base-8) number N = AB C is 5 times the two-digit octal number AC.
Compute the greatest possible value of N , giving your answer in base 8.
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TB-1. 24

TB-2. 106
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TB-1. Apply Stewart’s Theorem twice to triangle MEI, once using MH as the cevian, and once
using MA as the cevian. Let x = EH = HA = AI. By Stewart’s Theorem, we obtain

132(2x) + 172(x) = 3x(92 + 2x2)
132(x) + 172(2x) = 3x(112 + 2x2).

Adding these equations, we obtain 3x(132 + 172) = 3x(92 + 112 + 4x2). This can be solved to
obtain x = 8, so 3x = IE = 24.

TB-2. We have that 64A+8B+C = 5(8A+C), which implies 24A+8B−4C = 0→ C = 2(3A+B).
Since the value of C must be no greater than 7 and C must be even, the greatest value of C is
6. That makes 3A+B = 3, and thus A = 1 and B = 0. The greatest solution has N = 106.
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2016 Team Problems

T-1. The base-10 number 2016 can be expressed using base 3 as 2202200, four 2’s and three
0’s. There are two base-10 numbers A and B that are greater than 2016 and whose base-3
representations use four 2’s and three 0’s. Given that A < B, compute (A,B).

T-2. Suppose that, for a sequence {an}, a1 = 435, a2 = 167, and an = an−1 − an−2 for n ≥ 3.
Compute a20 − a16 + a2016.

T-3. Compute all n such that n+ s(n) = 2016, where s(n) denotes the sum of the digits of n.

T-4. Let S be the collection of 121 (not necessarily distinct) parabolas of the form f(x) = (x− a)(x− b)
where a, b ∈ {0, 1, 2, . . . , 10}. The average of the y-coordinates of the vertices of the 121
parabolas is t. Compute t.

T-5. To reach the Forbidden City, one must climb a lot of identical steps. Yodely Guy always starts
on the first step. Afterwards...
If Yodely Guy skips every other step, he will reach the top step on his last stride.
If Yodely Guy skips two steps on each stride, he will reach the top step on his last stride.
If Yodely Guy skips four steps on each stride, he will reach the top step on his last stride.
Given that there are more than 500 steps, compute the minimum number of steps in the
staircase to the Forbidden City.

T-6. Suppose that f(x) is defined for all integers x ≥ 0, and that f(m+n) = f(m)+f(n)−2·f(m·n)
for all integers m and n. Given that f(9) = 224, compute f(2015) + f(2016) + f(2017).

T-7. Compute the greatest multiple of 11 all of whose digits are distinct.

T-8. A sphere of radius 1 is inscribed in a cube with edge-length 2. Eight smaller congruent spheres
of radius r are placed, one in each corner of the cube, so that each smaller sphere is tangent
to three faces of the cube and to the larger sphere. Compute r.

T-9. For all real values of x and y, compute the minimum value of the expression

2|x− 5|+ 11|10− y|+ |11y − 2x+ 2000|.

T-10. In 4ABC, AB = 10, BC = 21, and CA = 17. Point D is on BC such that CD = 12. Circle
O passes through A, C, and D. Given that E is on circle O such that CE is parallel to AB,
compute CE.
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2016 Team Answers

T-1. (2124, 2160)

T-2. 870

T-3. 1989 and 2007 [must have both]

T-4. −5

T-5. 511

T-6. 448

T-7. 9876524130

T-8. 2−
√

3

T-9. 2100

T-10.
37

10
or 3

7

10
or 3.7
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T-1. The two numbers can be found by “sliding” the first 0 “down” the number 2202200 to create
2220200 and 2222000. Converting these gives A = 2124 and B = 2160, so the desired ordered
pair is (2124, 2160) .

T-2. There is a pattern: a3 = a2 − a1, a4 = a3 − a2 = −a1, a5 = a4 − a3 = −a2, a6 = a5 − a4 =
a1− a2 = −a3, and a7 = a1. Thus, the sequence repeats with period 6. So, a20− a16 + a2016 =
a2 + a1 + (a1 − a2) = 2a1 = 2 · 435 = 870.

T-3. Because n ≡ s(n) (mod 9), it is true that n ≡ 0 (mod 9). The greatest n which is less than
2016 and also equivalent to 0 mod 9 is 2007, which satisfies the equation. The greatest n
which is less than 2007 and also equivalent to 0 mod 9 is 1998, which does not satisfy the
equation. Next, note that the next smallest such integer is 1989, which does satisfy the given
equation. No other integer may satisfy the equation because s(n) ≤ 28 for four-digit integers
less than 2000 and that means that n ≥ 1988. Thus, n could be 1989 or 2007.

T-4. The vertices are at:
0 1 2 3 · · · 10 x-coord y-coord

0 (0, 0) (1
2
, −1

4
) (1,−1) (3

2
, −9

4
) · · · (5,−25) 0

2
to 10

2
02

4
to −102

4

1 (1
2
, −1

4
) (1, 0) (3

2
, −1

4
) (2,−1) · · · (11

2
, −81

4
) 1

2
to 11

2
−12

4
to 02

4
to −92

4

2 (1,−1) (3
2
, −1

4
) (2, 0) (5

2
, −1

4
) · · · (6,−16) 2

2
to 12

2
−22

4
to 02

4
to −82

4

3 (3
2
, −9

4
) (2,−1) (5

2
, −1

4
) (3, 0) · · · (13

2
, −49

4
) 3

2
to 13

2
−32

4
to 02

4
to −72

4
...

...
...

...
...

. . .
...

...
...

10 (5,−25) (11
2
, −81

4
) (6,−16) (13

2
, −49

4
) · · · (10, 0) 10

2
to 20

2
−102

4
to 02

4

The value of t is 1
121

(−1
4

(2(10)2 + 4(92) + 6(82) + 8(72) + · · ·+ 20(12) + 11(02))
)
, or

−1
484

(200 + 324 + 384 + 392 + 360 + 300 + 224 + 144 + 72 + 20 + 0) = −5.

T-5. The number of steps is one more than a multiple of 2, 3, and 5. The least common multiple of
2, 3, and 5 is 30. Thus, the least multiple of 30 greater than 500 is 510, so our answer is 511.

T-6. We first show that f(2 · k) = 0 for all natural k, and then we show that f(2 · k + 1) = f(1)
for all natural k.
Note that if m = n = 0, then f(0) = f(0) + f(0) − 2f(0) = 0, and if m = n = 1, then
f(2) = f(1) + f(1)− 2f(1) = 0 also.
Now proceed by induction. Let f(j) = 0 for even j less than or equal to 2k and let f(j) = f(1)
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for odd j between 1 and 2k − 1. Then, inductively, f(2k + 1) equals f(1) + f(2k) − 2f(2k).
By the inductive hypothesis, f(2k + 1) = f(1) + 0− 0 = f(1). Note that

f(2k + 2) = f(1) + f(2k + 1)− 2f(2k + 1) = f(1) + f(1)− 2f(1) = 0.

Thus the sequence is f(1), 0, f(1), 0, ... . The answer is f(2015) + f(2016) + f(2017) =
224 + 0 + 224 = 448.

This is a “NYSML Classic”. It is very much like question T9 from NYSML1986. For Met
fans, this is not the only part of 1986 that needs to be revisited!

T-7. Assume that the number contains all ten digits and that it is of the form 98765ABCDE.
This number is divisible by 11 if and only if (9 + 7 + 5 + B + D) − (8 + 6 + A + C + E) is
a multiple of 11. This implies that 7 + (B + D − (A + C + E)) = 11k for some integer k.
This is only possible if k = 1 and this requires B + D = 4 + A + C + E. This is possible
if {B,D} = {4, 3} and {A,C,E} = {0, 1, 2}. Thus, the greatest multiple of 11 with distinct
digits is 9876524130.

T-8. The space diagonal of the cube has length 2
√

3. Each space diagonal will pass through the
center of the large sphere and two of the smaller spheres (as well as the points of tangency
between the spheres. Let C denote the center of one of the small spheres and T the point of
tangency between the large sphere and one of the smaller spheres.

Notice that V C is a space diagonal of a cube with edge r and TC is a radius of a small sphere.

Thus, 2r + 2r
√

3 + 2 = 2
√

3. We solve to find r =
2
√

3− 2

2
√

3 + 2
= 2−

√
3.

T-9. Using the inequality |A| + |B| ≥ |A + B|, where A = 2(x − 5) and B = 11(10 − y), obtain
2|x− 5|+ 11|10− y| ≥ |2x− 11y+ 100|. Now let A = 2x− 11y+ 100 and B = 11y− 2x+ 2000
and apply the inequality again to obtain |2x − 11y + 100| + |11y − 2x + 2000| ≥ 2100 or
|2x−11y+100| ≥ 2100−|11y−2x+2000|. Applying the Transitive Property and moving the
rightmost term to the other side, we have that the given expression is at least 2100. Notice

that this can be achieved for many ordered pairs (x, y); for example, (x, y) =

Å
5,−1990

11

ã
satisfies this.
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T-10. Extend AD and EC, and let F be their intersection. Then 4FCD ∼ 4ABD. Use the

Law of Cosines to find that cosB =
3

5
and apply the Law of Cosines to 4ABD to obtain

AD =
√

73. Using similar triangles, FD =
4
√

73

3
and FC =

40

3
. Now, use the Power of a

Point Theorem on secants FA and FE to obtain
4
√

73

3

Ç
4
√

73

3
+
√

73

å
=

40

3

Å
40

3
+ CE

ã
.

This solves to obtain CE =
37

10
.



2016 Individual Problems

I-1. Consider sets of numbers {20, 16,m} for various values of m. If the median of the three
numbers is equal to the mean of the three numbers, compute the sum of all possible values of
m.

I-2. A five-digit natural number A B C D E is called downup if A > B > C and C < D < E.
For example, the numbers 96368 and 32014 are downup. Compute the number of downup
five-digit natural numbers.

I-3. The diagram shows a number line. On the number line, B is the average of A and C. For
some real x, A = 2x− 5, B = 4− x, and C = x + 4. P and Q are integers such that P < A
and Q > C. Compute the minimum possible distance PQ.

I-4. Compute all real values of x such that x2 + 3x− 26 =
√

16x2 + 48x− 80.

I-5. Compute the sum of the seven (not necessarily distinct) prime factors of 8!− 5!.

I-6. In 4ABC, sin2A+ sin2B = sin2C + sinA sinB sinC. Compute sinC in the form
x

y
where x

is real and y is a positive integer.

I-7. The area enclosed by the graph of |ax|+ |2ay| = 6 is 2016. Compute the positive value of a.

I-8. For some positive integer values of n and k, 2

Ç
n

k

å
=

Ç
n

k + 1

å
and 3

Ç
n

k

å
=

Ç
n

k + 2

å
.

Compute n+ k.

I-9. The roots of x2+30x+40 = 0 are s and t with s < t. Compute (s+20)(s+16)+(t+20)(t+16).
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I-10. Triangle ABC has side lengths AB = 3, BC = 4, and AC = 5. A circle centered at I is
tangent to all three sides of 4ABC. Circles centered at J , K, and L are each tangent to the
three lines containing sides of 4ABC. Compute the sum of the areas of the four circles.



2016 Individual Answers

I-1. 54

I-2. 2892

I-3. 8

I-4. −9 and 6 [must have both]

I-5. 86

I-6.
2
√

5

5

I-7.

√
14

28

I-8. 18

I-9. 380

I-10. 50π
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I-1. The mean is equal to
36 +m

3
. If the mean is equal to 16, then solve

36 +m

3
= 16→ m = 12.

If the mean is equal to 20, then solve
36 +m

3
= 20 → m = 24. If the mean is equal to m,

then solve
36 +m

3
= m→ m = 18. The sum of all possible values of m is 12 + 24 + 18 = 54.

I-2. The values of C range from 0 to 7. Once C is chosen, there are 9− C digits greater than C,
of which two must be chosen to be A and B and of which two must be chosen to be D and

E. Thus, there are

ÇÇ
9− C

2

åå2

downup numbers for each value of C. Summing these from

C = 0 to C = 7, the desired total is 362 + 282 + 212 + 152 + 102 + 62 + 31 + 12 = 2892.

I-3. Using the definition of average, 4 − x =
(2x− 5) + (x+ 4)

2
→ 8 − 2x = 3x − 1, so x =

9

5
.

Now, (A,B,C) = (2x − 5, 4 − x, x + 4) =

Å
−7

5
,
11

5
,
29

5

ã
. The minimum distance PQ will

occur when P is the greatest integer less than A and when Q is the least integer greater than
C. Thus, P = −2 and Q = 6, for a minimum PQ = 8.

I-4. Let y =
√
x2 + 3x− 5. Then, the given equation can be expressed as y2 − 21 = 4y, and this

is equivalent to y2− 4y− 21 = 0. Factoring and solving, we obtain y = −3 (which is rejected)
or y = 7. Now, solve x2 + 3x− 5 = 49 to obtain x = −9 or x = 6.

This is a “NYSML Classic”. It is very much like question I7 from NYSML2006. Math
never goes bad!

I-5. Remove the greatest common factor of 5! to obtain 5!(8 · 7 · 6 − 1) = 335(5 · 22 · 3 · 2), or
67 · 52 · 3 · 23, so the sum is 67 + 5(2) + 3 + 2(3) = 86.

I-6. The sides and sines of angles in 4ABC obey the Law of Sines:
a

sinA
=

b

sinB
=

c

sinC
, which

means that sinA = ka and sinB = kb and sinC = kc for some k (which is incidentally
1

2R
where R is the circumradius of the triangle). Substitute to obtain the equivalent equation
k2a2 + k2b2 = k2c2 + k2ab sinC, which implies a2 + b2 = c2 + ab sinC. However, the Law of
Cosines also holds true for this triangle, so a2 + b2 = c2 + 2ab cosC. Thus, 2 cosC = sinC.
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Finally, use sin2C + cos2C = 1 to obtain sinC =
2
√

5

5
. Note: Because angle C is an angle

in a triangle, the value of sinC must be non-negative.

I-7. The graph is a rhombus with vertices (0, 3/a), (6/a, 0), (0,−3/a), and (−6/a, 0). The area of

a rhombus is half the product of the lengths of its diagonals, so the area is
1

2
· 12

a
· 6

a
= 2016.

This is equivalent to
36

a2
= 2016, so a2 =

1

56
→ a =

1√
56

=

√
14

28
.

I-8. The equation 2

Ç
n

k

å
=

Ç
n

k + 1

å
implies

n!

k!(n− k)!
=

n!

2(k + 1)!(n− k − 1)!
. Expanding the

denominators yields n− k = 2(k+ 1), so n = 3k+ 2. The equation 3

Ç
n

k

å
=

Ç
n

k + 2

å
implies

n!

k!(n− k)!
=

n!

3(k + 2)!(n− k − 2)!
. Expanding the denominators yields (n− k)(n− k− 1) =

3(k+2)(k+1). Substituting, (2k+2)(2k+1) = 3(k+2)(k+1)→ 2(2k+1) = 3(k+2)→ k = 4,
so n = 14, and n+ k = 18.

Alternate Solution: Take note that

Ç
n

k

å
:

Ç
n

k + 1

å
:

Ç
n

k + 2

å
= 1 : 2 : 3. In Pascal’s

Triangle, a 1:2 ratio appears in every third row with

Ç
n

k + 1

å
=

Ç
3x− 1

x

å
starting in Row 2.

Similarly, a 2:3 ratio appears in every fifth row with

Ç
n

k + 1

å
=

Ç
5y − 1

2y − 1

å
starting in Row 4.

So, n ≡ 14 (mod 15). This sets up the system of equations where 3x−1 = 5y−1 and x = 2y−1.

Thus, y = 3 and x = 5. The relevant elements are

Ç
14

4

å
:

Ç
14

5

å
:

Ç
14

6

å
= 1001 : 2002 : 3003.

The value of n+ k = 14 + 4 = 18.

I-9. For a given root r of x2 + 30x+ 40 = 0, note that

(r + 20)(r + 16) = r2 + 36r + 320 = (r2 + 30r + 40) + 6r + 280,

or simply, (r+20)(r+16) = 6r+280. Thus, (s+20)(s+16)+(t+20)(t+16) = 6s+280+6t+280,
which can be rearranged to be 6(s+ t)+560. Now, use Vieta’s formulas to obtain s+ t = −30,
so (s+ 20)(s+ 16) + (t+ 20)(t+ 16) = 6(−30) + 560 = 380.

I-10. Let the inradius of 4ABC be rI , and let the radii of the three excircles be rJ , rK , and rL.

The area of 4ABC, denoted [ABC], is equal to s · rI , where s =
3 + 4 + 5

2
= 6. Thus,
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1

2
· 3 · 4 = 6 · rI implies rI = 1. Also, the area of a triangle is also equal to the product of

the radius of the excircle that is tangent to the extensions of the sides containing that vertex
and the difference between the semiperimeter of the triangle and the length of the side to
which the excircle is tangent. Thus, 6 = (6 − 3)rJ → rJ = 2, 6 = (6 − 5)rK → rK = 6, and
6 = (6− 4)rL → rL = 3. The total area of the four circles is π (12 + 22 + 32 + 62), or 50π.



Power Question 2016: The Division Algorithm

The Division Algorithm says that given two integers a and b (with b 6= 0), there exist unique
integers q and r such that a = b · q + r and 0 ≤ r < b. (You may think of q as the quotient and r
as the remainder from your elementary school days.)

Also, we say that a set S is closed under the Division Algorithm if for every pair of inte-
gers a and b where a ∈ S and b ∈ S, the integers q and r guaranteed by the Division Algorithm are
also in S. If a set S is closed under the Division Algorithm, we call S a DA-set.

Suppose that we are given two sets S and T with S ⊆ T . Suppose also that for every x ∈ T ,
if x /∈ S, then x is greater than every element of S. Then we say that S 4 T .

P-1. Compute the values of q and r guaranteed by the Division Algorithm for the following pairs
of integers:

a. a = 32 and b = 4. [1 pt]

b. a = 27 and b = 5 [2 pts]

c. a = −325 and b = 7 [2 pts]

P-2. Show that the sets {0, 1} and {0, 1, 2, 3, 5} are DA-sets. [5 pts]

P-3. Suppose that S = {0, 1, 2, 3, 4, 6} and that T is a DA-set with S 4 T . There are some integers
that cannot be elements of T . For example, no integer in the interval [15, 17] can be an
element of T .

a. Explain why no integer in the interval [15, 17] can be an element of T . [2 pts]

b. Find another interval [m,n] where n ≥ m + 3 such that no integer in [m,n] can be an
element of T . [3 pts]

P-4. Let S = {0, 1, 2, 3, 4, 5, 6, b} with b ≥ 8, and suppose that T is a DA-set with S 4 T . There
are some integers that cannot be elements of T . Show that no integer in the interval [150, 154]
can be an element of T . [5 pts]

P-5. Prove that if S 4 T and there are four elements of S and six elements of T , there is exactly
one set U with five elements such that S 4 U 4 T . [5 pts]

P-6. Suppose that S is a DA-set where the elements are written in increasing order; that is,
S = {0, 1, s1, s2, s3, ..., sn, sn+1, ..., sm}. Suppose n is a positive integer and that the DA-set S
contains at least n+ 3 elements, as described. Prove that sn+1 ≤ s1 · sn + 1. [5 pts]

P-7. Let n ≥ 1, a ≥ 2, and S = {0, 1, a, a2, a3, · · · , an, b} be a DA-set where the elements are
written in increasing order (that is, b > ai for all of the ai’s in S). Suppose b 6= 3 and
b 6= an+1. Prove that b = an + 1 or b = an+1 + 1. [5 pts]
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P-8. Prove that the set of whole numbers W = {0, 1, 2, 3, · · · } is a DA-set. [5 pts]

P-9. a. Prove that if one whole number w > 1 is removed from the set of whole numbers W =
{0, 1, 2, 3, · · · }, the resulting set W ′ = W − {w} is not a DA-set. [3 pts]

b. Prove that if the positive multiples of some whole number w > 1 are removed from the
set of whole numbers W = {0, 1, 2, 3, · · · }, the resulting set W ′′ = W − {kw} is not a
DA-set. [2 pts]

P-10. Suppose that the set P = {0, 1, 2, 4, 8, · · · } is a DA-set. Note that the numbers 3, 5, 6, and 7
are not elements of P (that is, the elements are written in increasing order). Find the other
elements in the infinitely large set P . Justify that these are the other elements in P . [5 pts]



Solutions to 2016 Power Question

P-1. a. Because 32 = 8 · 4 + 0, q = 8 and r = 0.

b. Because 27 = 5 · 5 + 2, q = 5 and r = 2.

c. Because −325 = −47 · 7 + 4, q = −47 and r = 4

P-2. The set {0, 1} is a DA-set because 1 = 1 · 1 + 0 and 0 = 0 · 1 + 0, and both quotients and both
remainders are in the set.

The set {0, 1, 2, 3, 5} is a DA-set. There are 20 choices of (a, b) to consider. Notice that
5 = 1 · 5 + 0, 5 = 1 · 3 + 2, 5 = 2 · 2 + 1, 5 = 5 · 1 + 0, 3 = 0 · 5 + 2, 3 = 1 · 3 + 0, 3 = 1 · 2 + 1,
3 = 3 · 1 + 0, 2 = 0 · 5 + 2, 2 = 0 · 3 + 2, 2 = 1 · 2 + 0, 2 = 2 · 1 + 0, and all quotients and all
remainders are in the set. Also, if b = 1 or b = 0, the quotients and remainders are in the set.

P-3. a. Because for all integers x in [15, 17], bx/3c = 5, so q = 5 will not be in T .

b. Answers will vary, but the explanations will be similar to the previous explanation.
Examples of such intervals include [20, 23], [30, 35], and [120, 143].

P-4. Notice that for x ∈ [150, 154], bx
5
c = 30. This implies that 30 ∈ T . Notice also that b30

4
c = 7,

and 7 /∈ T . Therefore, no integer in [150, 154] is in T .

P-5. Let T contain {s1, s2, s3, s4, x, y} with s1 < s2 < s3 < s4 < x < y. The set S contains the
si’s. We will show that U must be the set {s1, s2, s3, s4, x}. First, S 4 U because S ⊆ U
and x is greater than each of the si’s. Also, U 4 T because U ⊆ T and y is greater than
each of the si’s and also x. If there were some other set of cardinality 5, it would have to be
U ′ = {s1, s2, s3, s4, z} for some z. The z must be chosen from the set T −S and every element
in T − U ′ would have to be greater than z. This forces z to be equal to x, and the result is
achieved.

P-6. First, we will show that sn+1 < s1(sn + 1). Suppose otherwise; then the quotient b sn+1

s1
c is

trapped strictly between sn and sn+1, but the set contains no elements between those two
integers. If x ∈ [s1 · sn + 2, s1(sn + 1) − 1], then the remainder when dividing x by s1 is an
element of [2, s1 − 1], but that is an impossibility. Thus, the result is proven.

P-7. We cannot have b = 3 or b = an+1 by hypothesis. We consider the other possibilities.
If b ∈ [an + 2, an + a− 1], then the remainder is in [2, a− 1], but no such number exists in S.
If b ∈ [an + a, an+1− 1], then the quotient b b

a
c ∈ [an−1 + 1, an− 1], but no such number exists

in S.
The case b > an+1 + 1 is impossible from the result of P-6. Thus, the proof is complete.

P-8. Given two whole numbers a and b with b 6= 0, the quotient and remainder will both be whole
numbers. Therefore, the quotient and remainder will be in the set W. Thus, the set W is a
DA-set.
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P-9. a. Let w be the number removed from the set. Then, since w + 1 and w(w + 1) are both

in the set,
w(w + 1)

w + 1
= w should be in the set. This is a contradiction, and thus it is

impossible to remove just one whole number from the set of whole numbers and have a
DA-set.

b. The number 2w + 1 is in W ′′, but b2w+1
w+1
c = 1 and the remainder is w, and w is not in

W ′′.
Note: This helps establish that if an infinite DA-set looks almost like the whole numbers,
it must be the whole numbers.

P-10. The set P is the set containing all powers of 2 greater than 1 and also the number 0. If the

integer p is of the form 2k, then
2k

2m
will be in P for all m ≤ k and the remainder is 0, which

is also in P . If p is not of the form 2k, then p satisfies 2j < p < 2j+1 for some integer j. For
either 2j+1÷ p or p÷ 2j, the remainder will be trapped between two powers of 2 and thus not
in P .
Note: The only two types of infinite DA-sets are the set of whole numbers and sets like P in
P-10. There are no other kinds of infinite DA-sets.

This question was inspired by the recently published paper Sets Closed Under the Division
Algorithm by Robert O. Stanton, published in the American Mathematical Monthly (Novem-
ber 2015).



2016 Relay Problems

R1-1. The graph of y = x2 has a minimum point A. The graph of y = 128 − x2 has a maximum
point Q. The graphs of y = x2 and y = 128− x2 intersect at points U and D. Compute the
area of QUAD.

R1-2. Let N be the number you will receive. Compute blog3Nc, which is the greatest integer less
than or equal to log3N .

R1-3. Let N be the number you will receive. The perimeter of 4NY S is 3 · N . The lengths of all
sides are positive integers. If NY = Y S and NS is as small as possible, compute the area of
4NY S.

R2-1. Suppose the ten digits are listed in the alphabetical order of their names in English. For
example, 8 comes before 5 because EIGHT appears in the dictionary before FIVE. Which digit
is fourth in the list?

R2-2. Let N be the number you will receive. The line 3x+ y +N = 0 intersects the line 4x+ y = N
at the point (a, b). Compute a− b.

R2-3. Let N be the number you will receive. Compute the number of times that the graph of
y = (x2 − 9)2 −N intersects the x-axis.
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R1-1. 1024

R1-2. 6

R1-3. 3
√

7

R2-1. 9

R2-2. 81

R2-3. 3
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2016 Relay Solutions

R1-1. The point A is (0, 0). The point Q is (0, 128). The points U and D are (±8, 64). Notice that
QUAD is a rhombus, whose area is half the product of the diagonals: 1

2
· 16 · 128 = 1024.

R1-2. Because blog3Nc = k if and only if 3k ≤ N < 3k+1, compute powers of 3 while waiting. Notice
that 36 = 729 and 37 = 2187, so the answer is 6.

R1-3. If 3N is odd, then 3N = 2k+1 for some k, and NY = Y S = k and NS = 1, in which case the

area of 4NY S is 1
2
· 1 ·
»
k2 − (1

2
)2 = 1

4

√
4k2 − 1. If 3N is even, then 3N = 2k + 2 for some

k, and then NY = Y S = k and NS = 2 for an area of 1
2
· 2 ·
√
k2 − 12 =

√
k2 − 1. Because

3N = 18 = 2(8) + 2, the area of 4NY S is
√

82 − 1 =
√

63 = 3
√

7.

R2-1. The list of digits in their alphabetical order is 8, 5, 4, 9, 1, 7, 6, 3, 2, 0. The fourth digit in
the list is 9.

R2-2. Because the lines cross at (a, b), it is true that 3a + b + N = 0 and 4a + b−N = 0. Adding
these equations obtains the result that 7a+2b = 0→ b = −7

2
a. Therefore, 4a− 7

2
a−N = 0→

a = 2N and b = −7N . Thus, a− b = 2N − (−7N) = 9N . Substituting, a− b = 9 · 9 = 81.

R2-3. The graph of y = (x− 3)2(x+ 3)2 is a “big rounded W” touching the x-axis at x = ±3 with
the center of the W topping off at (0, 81). Because y = (x2 − 9)2 − N touches the x-axis
precisely when (x2 − 9)2 = N , there are:
zero intersection points if N < 0
two intersection points if N = 0
four intersection points if 0 < N < 81
three intersection points if N = 81
two intersection points if N > 81
Because N = 81, there are 3 intersection points.
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2016 Tiebreaker Problems

TB-1. If we define i =
√
−1, the summation

n=32∑
n=1

(1 + i)n = k(1− i). Compute k.

TB-2. There are N right triangles for which all of the side lengths are integers and for which one of
the legs has length 60. Compute N .
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TB-1. 65535

TB-2. 13
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2016 Tiebreaker Solutions

TB-1. Powers of i cycle in blocks of 4, so consider (1 + i)0 + (1 + i)1 + (1 + i)2 + (1 + i)3 =
1 + 1 + 1 + 2i+ 2i(1 + i) = 5i.

Expressions of the form (1 + i)k + (1 + i)k+1 + (1 + i)k+2 + (1 + i)k+3 simplify to (1 + i)k · 5i.
For k = 1, 5, 9, ..., 29, there are 8 blocks of 4 terms which when added are equivalent to the
given summation.

With a little effort, k = 1, 5, 9, 13 produce −5(1 − i), 20(1 − i), −80(1 − i), and 320(1 − i),
so we see that the sequence is geometric with common ratio −4. Thus the required sum is
a(1− rn)

1− r =
−5(1− (−4)8)

1− (−4)
= 48 − 1 = 65535.

TB-2. Let the other sides be x and z with x < z. Then, x2 + 602 = z2 → 3600 = (z − x)(z + x)
where z and x are of the same parity. Let z − x = 2a and z + x = 2b. Then the problem
situation yields 900 = ab where a < b. Since 900 = 22 · 32 · 52, the number of divisors is
(2 + 1)(2 + 1)(2 + 1) = 27, and there are 13 possible values of a (the smaller of the two
divisors). Therefore, there are 13 triangles.
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2017 Team Problems

T-1. Compute the number of positive integers that are less than 2017 and that are not multiples
of 20 or 17.

T-2. A group of 2017 students is having a single-elimination Rubik’s cube solving tournament.
In any round where an odd number of students begins the round (like the first round), one
student is given a bye. How many rounds will have a bye in this 2017-person tournament?
When a player is given a bye, that player does not play against an opponent in that particular
round. The player who is given the bye automatically advances to the next round.

T-3. When written as a decimal,
20

17
= 1.176 . . .. Compute the sum of the first 2017 digits of the

decimal expansion of
20

17
.

T-4. A 3-by-3-by-3 wooden cube is painted red on the outside and is then cut into 27 unit cubes.
A unit cube is selected uniformly at random and placed, at random, on a table. Suppose the
top face of that unit cube is red. Let P1 be the probability that exactly one other face of that
unit cube is red. Let P2 be the probability that exactly two other faces of that unit cube are
red. Compute P1 − P2.

T-5. The letters of the word MATHEMATICA are written on eleven tiles, one per tile. Four of those
eleven tiles are chosen uniformly at random without replacement. Compute the probability
that there are two distinct vowels and two consonants written on the four tiles chosen.

T-6. Nonconvex hexadecagon P1P2P3 · · ·P16 has the following properties:

• Interior angles have measure m∠Pn = 45◦ if n is odd and m∠Pn = 270◦ if n is even.

• Sides which have P4, P8, P12, or P16 as an endpoint have length 1.

• Sides which have P2, P6, P10, or P14 as an endpoint have length
√

2.

Compute the area of the hexadecagon.

T-7. Let f , g, and h be distinct linear functions of x for which f(6) = g(6) = h(6) = 6 and whose
roots are the positive integers a, b, and c respectively. The product of the slopes of the graphs
of the three functions equals −1. Compute the maximum possible value of the product abc.
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T-8. Compute the number of lattice points (i.e., points with integer coordinates) which are on the
graph of x2 + xy − 3x+ 2y − 2016 = 0 and which lie in the first quadrant.

T-9. For two ordered triples of distinct positive integers (x, y, z) with 1 < x < y < z, it is true that
x + y + z = 180, x and y have the same parity, x and z have opposite parity, y is a multiple
of x, and z is a multiple of y. Compute both ordered triples.

T-10. A fair coin is flipped nine times in succession. Define a run to be a maximal sequence of three
or more consecutive matching flips, like TTT or HHHH. Compute the probability that the
sequence of flips does not contain a run.



2017 Team Answers

T-1. 1803

T-2. 5

T-3. 9073

T-4. 0

T-5.
7

11

T-6. 8

T-7. 6384

T-8. 2

T-9. (5, 25, 150) and (5, 35, 140) [must have both]

T-10.
55

256
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T-1. Use the Principle of Inclusion-Exclusion. There are 2016 positive integers that are less than
2017. Of those, b2017

20
c = 100 are multiples of 20 and b2017

17
c = 118 are multiples of 17, leaving

2016− 100− 118 = 1798. However, the multiples of 20 · 17 were removed twice, so add them
back in. There are b2017

340
c = 5 of those, so the answer is 2016− 100− 118 + 5 = 1803.

T-2. The first round will have a bye, and 2018÷2 = 1009 students will remain after the first round.
There will be a bye in the second round, and 1010 ÷ 2 = 505 students will remain after the
second round. A bye will be awarded in the third round, and 506 ÷ 2 = 253 students will
remain after the third round. A bye will be given in the fourth round, and 254 ÷ 2 = 127
students will remain after the fourth round. A bye will be awarded in the fifth round, and
128÷ 2 = 64 students will remain after the fourth round. No bye will be awarded thereafter,
because 64, 32, 16, 8, 4, and 2 are powers of 2. Thus, there will be 5 byes.

T-3. The repetend is 1764705882352941, which has sum 72 and 16 digits. Because 2017 can be
expressed as 2017 = 126 · 16 + 1, the repetend appears 126 times after the initial 1, and that
makes 2017 digits. The desired sum is 126 · 72 + 1 = 9073.

T-4. The 27 cubes have a total of 6 × 3 × 3 = 54 red faces. One of these is the top of the chosen
cube. Twelve of the cubes have two faces painted red, so in 12 × 2 = 24 of the 54 cases,
exactly one of the other five faces is red. Eight of the cubes have three faces painted red,
so in 8 × 3 = 24 of the 54 cases, exactly two of the other five faces are red. Therefore, the
probabilities of the two described events are equal. The difference is 0.

T-5. First, a 4-letter selection with no restrictions can be made in

Ç
11

4

å
=

11 · 10 · 9 · 8
4 · 3 · 2 · 1 = 11 ·10 ·3

ways. A 4-letter selection with two distinct vowels and two consonants must contain A, E
or A, I, or E, I with two consonants. Choosing A, E, and two consonants or A, I, and two
consonants can be done in 3 · 1 · 6 · 5 ways. Choosing E, I, and two consonants can be done in

1 · 1 · 6 · 5 ways. The desired probability, therefore, is
2 · 3 · 1 · 6 · 5 + 1 · 1 · 6 · 5

11 · 10 · 3 =
5 · 6 · 7

11 · 10 · 3,

or
7

11
.
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T-6. The hexadecagon is drawn below. It is a union of many 45-45-90 triangles, as shown.

Superimposing it on a grid of unit squares, it can be determined that its area is 4 + 8 · 1
2

= 8.

T-7. Because the product of the slopes of the graphs of the three functions is negative, either one of
a, b, and c is negative or all three are negative. Because of symmetry about x = 6, the product
will be maximized if all three slopes are negative. The slope of any such linear equation with

a root r greater than x = 6 is m =
−6

r − 6
. Using roots a = 7 and b = 8 yields slopes of

mf = −6 and mg = −3 respectively. The slope mh =
−1

18
→ c = 114. The maximum product

abc is 7 · 8 · 114 = 6384.

Note: we should at least consider how not using the two smallest positive denominators

for m =
−6

r − 6
affects the product abc. Consider trying to get viable integer roots as close to

each other as possible. Because mf ·mg ·mh =

Å −6

a− 6

ã
·
Å −6

b− 6

ã
·
Å −6

c− 6

ã
= −1, we know

that (a− 6)(b− 6)(c− 6) = 216. Solutions such as (a, b, c) = (15, 12, 10) yield products that
are much less than 6384. Even the next closest case to the optimal case is (a, b, c) = (7, 9, 78),
and that product is abc = 4914, which is substantially less than 6384.

T-8. Collect terms with y on one side and terms without y on the other: y(x+2) = −x2+3x+2016.

This implies that y =
−x2 − 2x

x+ 2
+

5x+ 10

x+ 2
+

2006

x+ 2
= −x+ 5 +

2006

x+ 2
. For both x and y to be

integers, x+2 must be a factor of 2006. The factors of 2006 are ±1, ±2, ±17, ±34, ±59, ±118,
±1003, and ±2006. Reject the negative values because x must be positive. Also, x+ 2 cannot
be 1 or 2 for the same reason. Thus x must come from the set {15, 32, 57, 116, 1001, 2004}.
But y must also be positive, which eliminates x = 2004, x = 1001, x = 116, and x = 57. The
remaining values of x give positive values of x and y, and are x = 15 and x = 32. There are
2 such values.
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This is a “NYSML Classic”. It is very much like question T9 from NYSML1997. Good
math problems stand the test of time!

T-9. To obtain a sum of 180, x and y must be odd and z must be even. Because 1 < x < y < z,
x ≥ 3, and y ≥ x + 2. Let y = ax for some integer a. Because x and y are odd, a must also
be odd. Similarly, let z = by for some integer b. Because y is odd and z is even, b must be

even. Because x + y + z = 180, x + ax + abx = 180, or x =
180

1 + a+ ab
. The denominator

1 + a+ ab must be an even factor of 180 and produce an odd x-value. The only even factors
of 180 that produce odd x-values are 4, 12, 20, 36, 60, and 180, but 4 and 180 are easily
eliminated. Consider the following:
If a+ ab = 11, then a(1 + b) = 11, which has no solutions with a > 1 and b 6= 0.
If a+ ab = 19, this case is similar.
If a+ ab = 35, then a(1 + b) = 35, which implies a = 5 and b = 6 or a = 7 and b = 4. These
generate the ordered triples (5, 25, 150) and (5, 35, 140).
If a+ ab = 59, then this case is similar to the first two cases.
The answers are (5,25,150) and (5,35,140).

T-10. There are 29 = 512 possible sequences, so count the number of run-free sequences by means
of recurrence relations. Let S(n) represent the number of run-free sequences of length n with
the last two flips the same and D(n) represent the number of run-free sequences of length n
with the last two flips different. By inspection, S(2) = 2 [these are HH and TT] and D(2) = 2
[these are HT and TH].
Now, consider S(n + 1) and D(n + 1). This problem concerns itself with run-free sequences,
so assume that the first n flips in the n+ 1 are run-free, and check the final three flips of each
sequence.
Consider S(n + 1). If the first n flips end in two that match, it’s impossible to flip the coin
one more time and end with the last two flips the same, since that would produce a run of 3
at the end. If the first n flips end with the last two different, then the last two flips are the
same if the n+ 1st flip matches the nth flip. Therefore, S(n+ 1) = D(n).
Consider D(n+1). Starting with a run-free sequence of n flips, mismatching the final flip will
always produce a sequence that ends in two different flips. This means that for any run-free
length-n sequence, there is one length-(n + 1) sequence ending with two different flips, and
thus D(n+ 1) = S(n) +D(n).
Using these relations, construct the following table.

n 2 3 4 5 6 7 8 9
S(n) 2 2 4 6 10 16 26 42
D(n) 2 4 6 10 16 26 42 68

S(n) +D(n) 4 6 10 16 26 42 68 110

So the probability of a length-9 run-free sequence is
S(9) +D(9)

29
=

110

512
=

55

256
.
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Author’s Note: The probability is based on S(n) + D(n), which we found to be D(n + 1).
However, we also know that S(n) = D(n − 1), so D(n + 1) = D(n) + D(n − 1), meaning
that the D(n) row is a Lucas (Fibonacci-like) sequence starting with D(2) = 2 and D(3) = 4.
Backtracking produces D(1) = 2, confirming the fact that D(n) is twice the nth Fibonacci
number. We can work this out another way. A run-free sequence of length n will consist of an
alternating series of runs of H and T each of length 1 or 2. This is isomorphic to the famous
“staircase problem” which counts the number of ways to climb a staircase of n steps going up
either 1 or 2 steps at a time. The solution (omitted here) is that the number of ways for n
steps is the n+ 1st Fibonacci number. Since any run-free sequence can start with either an H

or a T, the number of such sequences is double a Fibonacci number, so P (n) =
2Fn+1

2n
=
Fn+1

2n−1
.
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I-1. In a sequence of seven consecutive integers, the sum of the third and fourth integers is 2017.
Compute the sum of the seven consecutive integers.

I-2. Compute the ordered triple of positive integers (x, y, z) that satisfies 2x + 2y = 2z and
x+ y + z = 2017.

I-3. Compute the number of ordered pairs of relatively prime positive integers (a, b) where a < b
such that a+ b = 2017.

I-4. In hexagon HEXAGN , all sides have length 4, m∠H = m∠X = m∠G = 90◦, and
∠E ∼= ∠A ∼= ∠N . Compute the area of HEXAGN .

I-5. In 4ABC, medians AD and BE are perpendicular to each other. Given that AC = 6 and
BC = 8, compute AB.

I-6. A path P0P1P2 . . . is constructed in the xy-plane as follows. Begin at P0(1, 0) and draw a line
segment with slope m where −1 < m < 0 to the point P1 on the y-axis. Then, construct a
segment perpendicular to P0P1 through P1, intersecting the negative x-axis at P2.

Repeat this process indefinitely, continuing straight between Pi’s and making 90◦ left turns at
the coordinate axes, as shown above. Given that the total length of the path is 29, compute
m.

I-7. Compute the sum of all integer values of k for which 8(k+6)/(2k−3) is an integer less than 10.
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I-8. For some real number a, let r1, r2, and r3 be the not-necessarily-distinct roots of x3 + 6x2 −
ax+ 3 = 0. Compute the minimum possible value ofÅ

r1 +
1

r1

ã2

+

Å
r2 +

1

r2

ã2

+

Å
r3 +

1

r3

ã2

.

I-9. Define the function f on the nonnegative integers by f(n) = n for 0 ≤ n ≤ 20, and f(n) is
the greater of (f(n− 20) + 17) and (f(n− 17) + 20) if n > 20. Compute f(2017).

I-10. Toni is exactly 3 miles from her destination, driving at 55 miles per hour. If she were instead
to drive the 3 miles at k miles per hour faster, she would arrive one minute sooner. Compute k.



2017 Individual Answers

I-1. 7063

I-2. (672, 672, 673)

I-3. 1008

I-4. 24 + 8
√

3

I-5. 2
√

5

I-6. −20

21

I-7. 6

I-8. 29

I-9. 2371

I-10.
121

5
or 24

1

5
or 24.2
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I-1. Let the seven integers be x− 3, x− 2, x− 1, x, x+ 1, x+ 2, and x+ 3. Then, according to the
problem statement, x + x − 1 = 2017, so 2x − 1 = 2017 → x = 1009. The sum of the seven
consecutive integers is 7x = 7(1009) = 7063.

I-2. Factor to obtain 2x(1+2y−x) = 2z. Since the right side is a power of 2, the expression 1+2y−x

must be a power of 2, and that can only happen if 2y−x = 1 → y − x = 0. This gives
2x(1 + 1) = 2x+1 = 2z, so z = x+ 1. Now, solve x+ x+ x+ 1 = 2017 to obtain x = 672. The
ordered triple is (672,672,673).

I-3. If a and b are not relatively prime, then they have some common factor g, where g > 1. If
g | a and g | b, then g | (a + b) → g | 2017. But 2017 is prime, so the only possible value
for g is 2017, in which case a+ b cannot equal 2017. Thus, for every ordered pair of positive
integers (a, b) with a, b < 2017, a and b will be relatively prime. Because a < b, a can take on
every integer value from 1 to 1008, so there are 1008 different ordered pairs.

I-4. The measures of angles E, A, and N are each one-third of 720◦ − 3 · 90◦ = 450◦, or 150◦.
Draw in diagonals EA, AN , and NE. Notice that 4EAN is equilateral with side length
√

42 + 42 = 4
√

2. Thus, [HEXAGN ] is equal to 3

Å
1

2
· 4 · 4

ã
+

(4
√

2)2 ·
√

3

4
, or 24 + 8

√
3.

This is a “NYSML Classic”. It is very much like question I6 from NYSML2002. Shapes
are fun in any era!

I-5. Let F be the point of intersection of the medians and let DF = x and EF = y. Because AD
and BE are medians, AF = 2x and BF = 2y. Applying the Pythagorean Theorem on4AFE
and4BFD yields 4x2+y2 = 9 and x2+4y2 = 16 respectively. Adding the two equations yields
5x2+5y2 = 25. Applying the Pythagorean Theorem to4AFB, AB2 = 4x2+4y2 = 4

5
·25 = 20,

so AB =
√

20 = 2
√

5.

I-6. The slope of P0P1 is m, so if P1 has coordinates (0, y),
y − 0

0− 1
= m→ y = −m. Now, because

P1(0,−m) and the slope of P1P2 is − 1

m
, the coordinates of P2 can be found in a similar way

to be (−m2, 0). Let O be the origin. Notice that 4OP0P1 ∼ 4OP1P2 ∼ 4OP2P3 ∼ · · · .
That implies that the lengths of the hypotenuses of the right triangles form a geometric series,
and because the lengths of OP0, OP1, and OP2 are 1, −m, and m2, the common ratio of the
geometric series is −m.

For an infinite geometric series with first term a1 and common ratio r, the sum is S =
a1

1− r .
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By the Pythagorean Theorem, P0P1 =
√
m2 + 1, so solve 29 =

√
m2 + 1

1− (−m)
→ m2 + 1 =

292(m2+2m+1), which is equivalent to 840m2+2·841m+840 = 0→ 420m2+841m+420 = 0.
This factors as (20m+21)(21m+20) = 0, which has only one value of m in the desired interval,

m = −20

21
.

I-7. The possible exponents are 0, 1, 1/3, and 2/3 because if 8a equals some number other than 1,

2, 4, or 8, the value of k is transcendental. If
k + 6

2k − 3
= 0, then k = −6. If

k + 6

2k − 3
= 1, then

k = 9. If
k + 6

2k − 3
=

1

3
, then k = −21. If

k + 6

2k − 3
=

2

3
, then k = 24. The sum of these values is

−6 + 9− 21 + 24 = 6.

I-8. The expression is symmetric, so we use symmetric elementary functions.

Notice that

Å
r1 +

1

r1

ã2

+

Å
r2 +

1

r2

ã2

+

Å
r3 +

1

r3

ã2

= (r2
1 + r2

2 + r2
3) +

1

r2
1

+
1

r2
2

+
1

r2
3

+ 6 =

(r1 + r2 + r3)2− 2(r1r2 + r1r3 + r2r3) +

Å
(r1r2)2 + (r1r3)2 + (r2r3)2

(r1r2r3)2

ã
+ 6. By Viete’s formulas,

this is equal to (−6)2 − 2(−a) +

Å
(r1r2 + r1r3 + r2r3)2 − 2(r1r2r3)(r1 + r2 + r3)

(−3)2

ã
+ 6 = 42 +

2a +

Å
(−a)2 − 2(−3)(−6)

9

ã
= 42 + 2a +

a2

9
− 4 =

1

9
(a2 + 18a + 342) =

1

9
((a + 9)2 + 261) =

1

9
(a + 9)2 + 29. Because the quadratic term is minimized when a = −9, the minimal value

is 29.

I-9. Find values for f(21), f(22), and so on, and note that f(n) = n + 3k for values of k that
satisfy 20 + (k− 1)(17) ≤ n ≤ 20 + 17k. Notice that 2026 = 20 + 118(17), so f(2026) = 2380,
and thus f(2017) = f(2026− 9) = 2380− 9 = 2371.

I-10. Let r and d denote the original speed and distance to the destination, respectively. At this
rate, Toni reaches her destination in t = d/r hours. If she increases her rate to r + k miles

per hour, her new time is t =
d

r
− 1

60
hours, or

60d− r
60r

hours. Equating and substituting,

r + k =
d

60d−r
60r

=
60rd

60d− r . Now, substituting, r + k =
60 · 55 · 3
60 · 3− 55

=
60 · 11 · 3

25
=

396

5
= 79.2

miles per hour. Thus, k = 79.2−55 = 24.2. Author’s note: Slow down and enjoy the scenery!



Power Question 2017: Quaternions

The quaternions are numbers of the form a+ bi+ cj+dk, where a, b, c, d are real and the constants
i, j, k have the property that i2 = j2 = k2 = ijk = −1. They are an extension of the complex
numbers. The set is usually denoted H for William Rowan Hamilton who developed them in 1843.
The addition of two quaternions u and v, where u = u1 +u2i+u3j+u4k and v = v1 +v2i+v3j+v4k
is defined u+ v = u1 + v1 + (u2 + v2)i+ (u3 + v3)j + (u4 + v4)k. We also define multiplication by a
real number c such that cu = cu1 + cu2i+ cu3j+ cu4k and uc = u1c+u2ci+u3cj+u4ck. Because of
the commutative property of multiplication of real numbers, for the real number c and quaternion
u, cu = uc. Defining multiplication of two quaternions will require some care because, although we
will assume that multiplication of quaternions is associative, we do not assume that multiplication
of quaternions is commutative.

P-1. a. Compute the sum (3− 2i− 4j + 6k) + (7− 5i+ 3j + 4k). [2 pts]

b. Find a quaternion z such that z + (2 + 0i+ 1j − 7k) = 0. [3 pts]

P-2. a. If we right-multiply both sides of the equation ijk = −1 by k, we get ijk2 = −1k = −k,
or ij(−1) = (−1)k, so ij = k. Left-multiply both sides of the equation the equation
ijk = −1 by i to show that jk = i. [3 pts]

b. Show that kji = 1. [3 pts]

P-3. Use the result of P2 to show that kj = −i 6= jk, which establishes that multiplication of
quaternions is not commutative. [4 pts]

Using similar procedures, it turns out that the following multiplication table is established.

× 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Multiplication can then be defined using the distributive property and the table above. If u =
u1 +u2i+u3j+u4k and v = v1 + v2i+ v3j+ v4k, by straightforward calculations one may establish
the following identity:

u× v =u1v1 − u2v2 − u3v3 − u4v4

+ (u2v1 + u1v2 − u4v3 + u3v4)i

+ (u3v1 + u4v2 + u1v3 − u2v4)j

+ (u4v1 − u3v2 + u2v3 + u1v4)k.

P-4. a. Find the product (3 + 2i− j)(4− 2k). [2 pts]

b. Find the product (4− 2k)(3 + 2i− j). [2 pts]
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P-5. Many of the properties of a field (your Abstract Algebra professor will explain this more some
day) apply to H. It is easy to show that the set H is closed under addition and multiplication
(that is, the sum or product of two quaternions is a quaternion). Show that the following
properties hold.

a. The set H has an additive identity and a multiplicative identity. That is, there are
quaternions a and m such that for all quaternions u, a + u = u + a = u and m · u =
u ·m = u. [2 pts]

b. The set H is commutative under addition. [2 pts]

c. The element v is such that v = −u. This can be proven by adding component-wise:
u + (−u) = (u1 + u2i + u3j + u4k) + (−u1 + −u2i + −u3j + −u4k), so u + (−u) =
0 + 0i+ 0j + 0k = 0, and 0 is the additive identity. [2 pts]

P-6. If u = u1 + u2i + u3j + u4k, define the conjugate u as u = u1 − u2i − u3j − u4k. Show that
uu = uu = u2

1 + u2
2 + u2

3 + u2
4. Note that this is a nonnegative real number, and that it is the

square of the distance from u to the origin when u is taken to be a point in four-dimensional
space. The square root of this quantity,

√
uu =

√
u2

1 + u2
2 + u2

3 + u2
4, is denoted ‖u‖ and is

called the norm of u. [4 pts]

P-7. For a nonzero quaternion u = u1 +u2i+u3j+u4k, the inverse of u, written u−1, is defined as
the quaternion such that uu−1 = u−1u = m, where m is the same value from question P5-a.
Find an expression for u−1 in terms of the un and u. [5 pts]

P-8. Show that, for nonzero quaternions u and v, the inverse of the product uv is given by (uv)−1 =
v−1u−1. [5 pts]

P-9. Given a quaternion u = u1 + u2i + u3j + u4k, we call the quaternion pure if u1 = 0, and we
call the quaternion a unit quaternion if ‖u‖ = 1.

a. Verify that all pure unit quaternions are square roots of −1. Note that this implies that
there are infinitely many square roots of −1. [2 pts]

b. Prove that the only square roots of −1 are pure unit quaternions. [3 pts]

P-10. Determine, with proof or counterexample, whether the Zero Product Property is true for
quaternions. That is to say, determine whether it is true that, given quaternions u and v such
that u · v = 0, then u = 0 or v = 0. [6 pts]



Solutions to 2017 Power Question

P-1. a. Adding components, this sum is 10− 7i− j + 10k.

b. This quaternion can be found by negating each coefficient, so z = −2− 1j + 7k.

P-2. a. Left-multiplying obtains i2jk = i(−1) = −i, which implies (−1)jk = (−1)i, and dividing
by −1 obtains the result jk = i.

b. From P2-a, we have ij = k. Right-multiplying by j yields ij2 = kj → −i = kj. Now,
right-multiplying by i yields −i2 = kji, so kji = (−1)(−1) = 1, as needed.

P-3. Right-multiplying both sides of kji = 1 by i yields kji2 = i → kj(−1) = i → kj = −i.
Multiplication of quaternions is not commutative.

P-4. a. Using the distributive property and the table, (3 + 2i − j)(4 − 2k) = 3 · 4 + 2i · 4 − j ·
4 + 3 · −2k + 2i · −2k + −j · −2k, or 12 + 8i − 4j − 6k + 4j + 2i. Simplifying, this is
12 + 10i− 6k.

b. Using the distributive property and the table, (4 − 2k)(3 + 2i − j) = 4 · 3 + 4 · 2i + 4 ·
−j +−2k · 3 +−2k · 2i+−2k · −j. Simplifying, this is 12 + 4i− 8j − 6k.

P-5. a. The additive identity is 0 and the multiplicative identity is 1. The proofs are trivial.

b. Because addition of quaternions is done component-wise, and the addition of the real
number coefficients is commutative, the addition of quaternions is commutative.

c. The element v is such that v = −u. This can be proven by adding component-wise:
u + (−u) = (u1 + u2i + u3j + u4k) + (−u1 + −u2i + −u3j + −u4k), so u + (−u) =
0 + 0i+ 0j + 0k = 0, and 0 is the additive identity.

P-6. Applying the definition of multiplication and the definition of conjugate, uu is equal to u2
1 +

u2
2 + u2

3 + u2
4 + (u1 · −u2 + u2 · u1 + u3 · −u4 − u4 · −u3)i+ (u1 · −u3 − u2 · −u4 + u3 · u1 + u4 ·

−u2)j + (u1 · −u4 + u2 · −u3 − u3 · −u2 + u4 · u1)k. The coefficients of i, j, and k are all 0,
yielding the desired result.

P-7. From P6, uu = u2
1 + u2

2 + u2
3 + u2

4. Dividing both sides by u2
1 + u2

2 + u2
3 + u2

4 yields

u · u

u2
1 + u2

2 + u2
3 + u2

4

= 1. Therefore, u−1 =
u

u2
1 + u2

2 + u2
3 + u2

4

. Note that u−1 · u =

u

u2
1 + u2

2 + u2
3 + u2

4

· u =
u2

1 + u2
2 + u2

3 + u2
4

u2
1 + u2

2 + u2
3 + u2

4

= 1, as required.

P-8. By definition of inverse, (uv)(uv)−1 = 1. Also, notice that (uv)(v−1u−1) = u ·1 ·u−1 = uu−1 =
1. Because inverses of quaternions are unique, (uv)−1 = v−1u−1.

P-9. a. Let the pure unit quaternion be u = 0 + u2i + u3j + u4k where u2
2 + u2

3 + u2
4 = 1.

Applying the definition of multiplication of quaternions, u2 = 02 − u2
2 − u2

3 − u2
4 + (0 +

0 + u3u4 − u4u3)i + (0 − u2u4 + 0 + u4u2)j + (0 + u2u3 − u3u2 + 0)k, which implies
u2 = −(u2

2 + u2
3 + u2

4) = −1. Thus, every pure unit quaternion is a square root of −1.
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b. First, consider that if q is a nonzero pure quaternion, then q2 is a negative real number.
This can be proven by recognizing that (by P6) q · q is a positive real number, and then
by recognizing that if q is pure, then q = −q, so q · −q is a positive real number, which
implies that q2 must be a negative real number.

Now, let u2 = −1, and write u = r + q where r is real and q is pure. Then, u2 =
r2 + 2rq + q2, or u2 = (r2 + q2) + 2rq. Because q2 is a negative real number, r2 + q2 is a
real number. Also, 2rq is pure. But because u2 = −1, 2rq = 0, which implies r = 0 or
q = 0. (Notice that this must be true because multiplication of a quaternion by a number
is established in the Background, and so we don’t need the Zero Product Property for
quaternions yet.) If q = 0, then u2 = r2 ≥ 0. This is a contradiction because u2 = −1.
Therefore, r = 0 and u = q. So, q2 = −q · q = −‖q‖2 = −1, and the norm of q equals 1,
which implies that u is a pure unit quaternion.

P-10. The Zero Product Property does hold for quaternions. Consider that, from P8, the product
of two nonzero quaternions has an inverse. If the product of two nonzero quaternions has an
inverse, that product cannot be zero. Therefore, if the product of two quaternions is zero, one
of them has to be zero.



2017 Relay Problems

R1-1. There are some people walking some dogs in a park. In all, the total number of people and
dogs is 37. Each person has two legs and each dog has four legs. If the total number of legs
on all of the creatures in the park is 108, compute the number of people in the park.

R1-2. Let N be the number you will receive. A triangle has perimeter N , and each of its sides has
integral length. If the area of the triangle is as large as it can be (given these constraints), its
area is a

√
b, where a and b are integers and b has no factor greater than 1 which is a perfect

square. Pass back the ordered pair (a, b).

R1-3. Let (a, b) be the ordered pair you will receive. A circle of diameter a is tangent to sides AB
and AD of square ABCD with side length b. The diagonal AC of the square is broken into
three segments by the circle. Two of these segments are outside the circle. Compute the
length of the larger of these two segments.

R2-1. Triangle OPQ is given, with O at the origin, P on the x-axis, and Q on the y-axis. If the
medians of 4OPQ meet at (5, 2), compute the area of 4OPQ.

R2-2. Let N be the number you will receive. If the reciprocal of the sum of the reciprocals of x and
N

5
equals 12, compute x.

R2-3. Let N be the integer you will receive. Compute the greatest integer value of x that makes the
expression (x−N)2 + 16 a perfect square.
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R1-1. 20

R1-2. (6, 10)

R1-3. 7
√

2− 3

R2-1. 45

R2-2. −36

R2-3. −33
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R1-1. Solve the system P +D = 37 and 2P + 4D = 108 to obtain P = 20 and D = 17. The number
of people is 20.

R1-2. Given a triangle of fixed perimeter, the largest area will come from the triangle that is closest
to equilateral. That means there will be sides of 7, 7, and 6. This is isosceles, so drop an
altitude to the side of length 6 and compute the height =

√
72 − 32 = 2

√
10. So the area of

the triangle is 1
2
· 6 · 2

√
10 = 6

√
10. Pass back (6,10).

R1-3. Coordinatize the situation. Put vertices A(0, 0) and C(b, b) so that the circle has equation
(x− a/2)2 + (y − a/2)2 = a2/4. The diagonal AC has equation y = x, so equate the line and
the circle to find the intersection points are at x = a/2 ± a/4 ·

√
2. Substituting, the larger

segment will connect (3 + 1.5
√

2, 3 + 1.5
√

2) and (10, 10). The distance between them can be
computed to be 7

√
2− 3.

R2-1. The medians meet at the centroid, which is 2/3 of the way to the midpoint of the hypotenuse.

Thus, the midpoint of the hypotenuse is (7.5, 3). If P (x, 0) and Q(0, y), then
x+ 0

2
= 7.5 and

y + 0

2
= 3, so the area of the triangle is 1

2
· x · y = 1

2
· 15 · 6 = 45.

R2-2. Solving,
1

1
x

+ 5
N

= 12→ 1

x
+

5

N
=

1

12
→ x =

12N

N − 60
. Thus, x =

12 · 45

45− 60
= 12 · −3 = −36.

R2-3. Let A = x−N (an integer). Then A2 + 16 = B2 implies 16 = (B − A)(B + A). Factor pairs
of 16 are 16 · 1, 8 · 2, and 4 · 4. The 16 · 1 pair implies A and B are fractional and is thus
rejected. The 4 · 4 pair implies A = 0 and x = N . The 8 · 2 pair implies A = 3 and B = 5,
which means x = N +3, which is greater than N for all N . Thus, add 3 to the passed number
to obtain −36 + 3 = −33.
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2017 Tiebreaker Problems

TB-1. The integers from 1 through 2017 are written consecutively to form the 6961-digit num-
ber 123456 · · · 20162017. If S(n) denotes the sum of the digits of the number n, compute
S(S(S(S(123456 · · · 20162017)))).

TB-2. A right triangle 4NY S has sides such that NY + Y S = 12 and NS = 8. Compute the area
of 4NY S.
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TB-1. 1

TB-2.
40

3
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TB-1. The digit sum of a number is congruent to the number mod 9. The sum of the digits of
A = 123456 · · · 20162017 is less than 6961·9 < 63000. This implies S(A) < 63000, which means
S(S(A)) < 5 ·9 = 45. This implies that S(S(S(A))) ≤ 3+9 = 12, and so S(S(S(S(A)))) ≤ 9.
Therefore, find the value of A mod 9, and this will be the answer. Notice that mod 9,
123456 · · · 20162017 ≡ 1 + 2 + 3 + · · ·+ 2 + 0 + 1 + 7, and also 123456 · · · 20162017 ≡ 1 + 2 +

3 + · · ·+ 2016 + 2017 ≡ 2017(2018)

2
≡ 2017 · 1009 ≡ 1(1) = 1.

TB-2. If NY and Y S are the legs and NS is the hypotenuse, then NY 2 + Y S2 = NS2 and the area
of the triangle is NY ·Y S

2
. Notice that, in this case, (NY +Y S)2 = NY 2 +Y S2 + 2 ·NY ·Y S =

NS2 + 2 ·NY · Y S, so 144 = 64 + 2 ·NY · Y S → NY · Y S
2

= 20. However, there is no pair of

real numbers a and b for which a+ b = 12 and ab = 40 (think: the equation x2− 12x+ 40 = 0
has a negative discriminant). This means that NS is not the hypotenuse.

Therefore, one of NY and Y S is the length of the hypotenuse. Without loss of generality, let
NY be the hypotenuse. Then, (12−NY )2+NS2 = NY 2 → 144−24NY +NY 2+NS2 = NY 2,

so NY =
26

3
. This implies that the area of the triangle is

1

2
· 10

3
· 8 =

40

3
.
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2018 Team Problems

T-1. Compute the number of values of b for which x2 + bx + 2018 is factorable over the integers.

T-2. Define the double factorial of a positive integer n, denoted n!!, as follows:
n!! = n(n − 2)(n − 4) · · · (3)(1) if n is odd, and n!! = n(n − 2)(n − 4) · · · (4)(2) if n is even.
Compute the odd number N for which N !! has the same number of prime factors (counting
multiplicities) as 20!!.

T-3. Compute the value of (sin 40◦ + sin 160◦ + sin 280◦)(cos 80◦ + cos 200◦ + cos 320◦).

T-4. Consider two-digit base-10 positive integers of the form N = T U , where |2T − U | ≤ 1.
Compute the sum of all possible primes N .

T-5. Four teams play a single-elimination tournament. The probability that the Aardvarks beat the
Burros in a single game is 0.8. The probability that the Chickens beat the Burros in a single
game is 0.9, which is the same probability that the Ducks beat the Burros in a single game.
The Chickens and Ducks are evenly matched when they play each other. The probability
that the Aardvarks beat the Chickens is the same as the probability that the Aardvarks beat
the Ducks, and that probability is 0.7. In the first round of the tournament, the Aardvarks
play the Burros and the Chickens play the Ducks. The winners of those games play the
championship game. Compute the probability that the Chickens win the championship.

T-6. Harriet and Thelma are playing a game with an unfair coin. Harriet goes first. The players
take turns tossing the coin until either Harriet tosses heads or Thelma tosses tails. Given that

the probability that Harriet wins the game is
10

19
, compute the probability that the biased

coin comes up heads on any single toss.

T-7. Let f(z) be a function on the complex numbers such that for all z, f(z) = (f(2018 − z))2.
Given that f(100) 6= 0 and f(100) 6= 1, compute the sum of all possible values of f(100).

T-8. An interior diagonal of a convex polyhedron is a segment that connects two vertices of the
polyhedron but does not lie on any of the edges or in any of the faces of the polyhedron.
Compute the number of interior diagonals of a regular dodecahedron.
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T-9. A Numbrix puzzle is a 9× 9 grid which is filled with the counting numbers from 1 through 81
such that the path between consecutive numbers is either horizontal or vertical – no diagonal
paths. In the Numbrix puzzle shown, some numbers are filled in.

Compute the sum of the numbers in the three highlighted cells.

T-10. Consider the product 142857 · x for various positive integers x. Compute the least positive
integer x for which some digit other than the units digit of 142857 · x is 0.



2018 Team Answers

T-1. 4

T-2. 35

T-3. 0

T-4. 190

T-5.
21

100
or 0.21

T-6.
2

5
or 0.4 or 40%

T-7. −1

T-8. 100

T-9. 20π

T-10. 37
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T-1. If x2 + bx+ 2018 = (x+m)(x+n), then m+n = b and mn = 2018. The only sets of integers
{m,n} are {1, 2018}, {−1,−2018}, {2, 1009}, and {−2,−1009}, for a total of 4 values of b.

T-2. Consider that 20!! = 2(2×2)(2×3)(2×2×2)(2×5)(2×2×3)(2×7)(2×2×2×2)(2×3×3)(2×
2×5), which has 25 prime factors, counting multiplicities. Now, build an odd double-factorial
that has 25 prime factors. Because N !! = 3(5)(7)(3×3)(11)(13)(3×5)(17)(19)(3×7)(23)(5×
5)(3× 3× 3)(29)(31)(3× 11)(5× 7) has 25 prime factors, N = 35.

T-3. Recall that both the real components and the imaginary components of the complex cube roots
of 1 add to 0. In other words, sin 0◦+sin 120◦+sin 240◦ = 0 and cos 0◦+cos 120◦+cos 240◦ = 0.
A rotation of 40◦ or 80◦ of those roots around the standard unit circle does not change this
fact. As such, both factors equal 0, and so their product is 0.

T-4. Because N is prime, U is odd. Notice also that
U − 1

2
≤ T ≤ U + 1

2
, so there are two possible

T -values for every U -value. If U = 1, T = 0 or 1. If U = 3, T = 1 or 2. If U = 5, T = 2 or 3.
If U = 7, T = 3 or 4. If U = 9, T = 4 or 5. The primes generated in this way are 11, 13, 23,
37, 47, and 59, which sum to 190.

T-5. The probability that the Aardvarks win the championship is (0.8)(0.7) = 0.56. The proba-
bility that the Burros win the championship is (0.2)(0.1) = 0.02. The Chickens and Ducks
win the championship with equal probability, so the probability that the Chickens win the

championship is 0.5(1− 0.56− 0.02) = 0.21 or
21

100
.

This is a “NYSML Classic”. It is very much like question T8 from NYSML2003. Good
math problems stand the test of time!

T-6. Let p be the desired probability. The probability that Harriet wins is equal to the probability
that she wins on the first toss plus the probability that she wins on a later toss. To win on a
later toss, the first toss must be tails, then the second toss must be heads, and after that, the

game effectively starts anew. Thus,
10

19
= p+ (1− p) · p · 10

19
⇒ 10 = 19p+ (1− p)(p)(10)⇒

10p2 − 29p+ 10 = 0. This implies (5p− 2)(2p− 5) = 0, which has only one solution between

0 and 1, so p =
2

5
.

T-7. Notice that f(100) = (f(1918))2, but also f(1918) = (f(100))2, so by substitution, f(100) =
((f(100))2)2 = (f(100))4. This implies (f(100))((f(100))3 − 1) = 0. Factoring, this implies
f(100)(f(100) − 1)((f(100))2 + f(100) + 1) = 0. Because f(100) 6= 0 and f(100) 6= 1, it is
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true that (f(100))2 + f(100) + 1 = 0. By Viete’s formulas, the sum of the remaining possible

(non-real) values of f(100) is
−1

1
= −1.

T-8. A dodecahedron has twelve pentagonal faces, each of which has five vertices, and each vertex
is on three faces, so there are 12×5÷3 = 20 vertices. To draw an interior diagonal, choose one
of the 20 vertices, and then select another vertex that is not part of any face containing the
first vertex. The diagram shows three adjacent faces of the dodecahedron. From the diagram,
observe that out of the 19 vertices other than A, 9 of them share a face with A. Thus, there
are 10 possible choices of the second vertex.

Accounting for choosing the vertices in either order, there are
20 · 10

2
= 100 interior diagonals.

T-9. Work the top and bottom rows and the leftmost and rightmost columns, first filling in these
outermost cells where there is only one choice and then working inward wherever the choice
is certain. All unshaded cells were certain.
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At this point, there are at least two possibilities for each of the remaining numbers, like 75, 18,
28, 60, 56, 46, and 34. Of the two possibilities for 34, one leads immediately to an impossible
situation (no place for 36), so place 34 and continue (in red below). Connecting 45 and 55 (in
yellow below) as well as 20 through 25 leaves no “holes”. Connect 61 and 55 (in green below).
Connect 75 to 81 (in blue below).

If any of these choices had resulted in an impossible situation, then the procedure would be
to back up and take another option. That is not the case here, so add the three highlighted
cells to obtain 1 + 25 + 80 = 106.
Query: Can you argue that the solution is unique?

T-10. Notice that 142857 are the repeating digits in the decimal expansion of
1

7
. For the first few

multiples of 142857 the digits cycle around as follows:

142857·2 = 285714, 142857·3 = 428571, 142857·4 = 571428, 142857·5 = 714285, 142857·6 = 857142.

However, 142857 · 7 = 999999. Thinking of 999999 as 1000000− 1 for x = 8 through x = 14,
the products are predictable, as follows:

142857 · 8 = 1142856,

142857 · 9 = 1285713,

142857 · 10 = 1428570,

142857 · 11 = 1571427,

142857 · 12 = 1714286,

142857 · 13 = 1857141,
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142857 · 14 = 1999998.

Think of 1999998 as 2000000 − 2. (In other words, instead of prefixing 1 and subtracting 1
from the rightmost digit of something from the pattern above, prefix 2 and subtract 2 from
the rightmost digit of something from the pattern above.) The pattern continues.
Prefixing 2 and subtracting 2 yields 2142855, . . . , 2857140, 2999997. This includes all values
of x through x = 21.
Prefixing 3 and subtracting 3 yields 3142854, . . . , 3857139, 3999996. This includes all values
of x through x = 28.
Prefixing 4 and subtracting 4 yields 4142853, . . . , 4857138, 4999995. This includes all values
of x through x = 35.
Prefixing 5 and subtracting 5 yields 5142852, 5285709, . . . .
Therefore, the least value of x for which a nonzero digit appears in a place besides the ones
place is x = 37.



2018 Individual Problems

I-1. The sum of the two seven-digit numbers N Y SM L 1 7 and N Y SM L 1 8 is 7936835. The
five-digit number N Y SM L has four not-necessarily-distinct prime factors. Compute the
greatest prime factor of the five-digit number N Y SM L.

I-2. Let r be the greater root of x2 + x = 2018. Compute the value of (r− 1)(r+ 2)(r− 3)(r+ 4).

I-3. If P (n) denotes the product of the digits of n!, compute the value of

P (0) + P (1) + P (2) + · · ·+ P (2017) + P (2018).

I-4. A 3-by-4 piece of paper is folded along its diagonal to form a nonconvex polygon as shown.

Compute the area of the polygon in square units.

I-5. Compute the value of
√

50 · 51 · 54 · 55 + 4.

I-6. The numbers 1, 2, 3, . . . , 100 are divided into two groups, A and B. Group A contains those
numbers whose nearest perfect square is even. For example, 17 is in Group A because it is
closer to 16 than to 25. Group B contains those numbers whose nearest perfect square is odd.
Let C be the sum of the elements in A and let D be the sum of the elements in B. Compute
C −D.

I-7. In quadrilateral ABCD, AB = 15, AD = 7, CB = 20, and CD = 24, and angles B and D
are supplementary. Compute sinA.

I-8. Let f(x) = x4− 2x3− 23x2 + 26x+ 127 and let g(x) = Ax+B for some integers A and B. If
f(x) = g(x) has exactly two distinct solutions, both of which are real, and if f(x) < g(x) has
no real solutions, compute the ordered pair (A,B).
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I-9. Compute the least positive integer a > 2018 such that a3 + 20a2 + 3a+ 18 is divisible by 17.

I-10. Sally chooses 11 integers at random without replacement from the set of 15 integers {1, 2, 3, . . . , 14, 15}.
Compute the probability that the median of Sally’s 11 integers is 9.



2018 Individual Answers

I-1. 3307

I-2. 4044096

I-3. 18

I-4.
117

16

I-5. 2752

I-6. 100

I-7.
4

5

I-8. (2,−17)

I-9. 2022

I-10.
16

65
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I-1. Because 2 · N Y SM L 0 0 = 7936800, N Y SM L = 39684. This is a multiple of 4, so write
39684 = 22 · 9921. Notice that 9921 is a multiple of 3, so 39684 = 2 · 2 · 3 · 3307. All four of
these factors are prime, so the greatest prime factor of N Y SM L is 3307.

I-2. Multiplying, the desired value is equivalent to (r2 + r − 2)(r2 + r − 12) = ((r2 + r − 2018) +
2016)((r2 + r− 2018) + 2006). Because r2 + r− 2018 = 0, this is equivalent to (2016)(2006) =
20112 − 52 = 4044121− 25 = 4044096.

I-3. The product of the digits of 5! = 120 is 0, as is the product of every factorial greater than 5!.
The first few factorials are 0! = 1, 1! = 1, 2! = 2, 3! = 6, and 4! = 24. Therefore, the desired
sum is P (0) + P (1) + P (2) + P (3) + P (4) = 1 + 1 + 2 + 6 + 8 = 18.

I-4. Consider the diagram. Because of overlap, the area of the pentagon equals the area of the
original rectangle minus the area of 4ABC. Because AC is the diagonal of the rectangle,
EC = 5/2 by symmetry. Both ∠D and ∠BEC are right angles, so 4ADC ∼ 4BEC and

therefore
EB

EC
=

3

4
⇒ EB =

3

4
· 5

2
=

15

8
. Then, [ABC] =

1

2
· 5 · 15

8
=

75

16
.

The area of the pentagon is therefore 12− 75

16
=

117

16
.

I-5. Let x = 50. Substituting and arranging factors allows the value to be expressed as√
x(x+ 5)(x+ 1)(x+ 4) + 4, which can be rewritten as

√
(x2 + 5x)(x2 + 5x+ 4) + 4

=
√

(x2 + 5x)2 + 4(x2 + 5x) + 4, and this can be expressed as
√

(x2 + 5x+ 2)2 = x2 +5x+2.
Now, substituting x = 50, the value is 2500 + 250 + 2 = 2752.

This is a “NYSML Classic”. It is very much like question I7 from NYSML2013. Good
questions are fun in any year!

I-6. The numbers 1 and 2 belong in Group B because they are closer to 1 than to 4. The numbers
3, 4, 5, and 6 belong in Group A because they are closer to 4 than to 9. The numbers 7, 8,
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9, 10, 11, and 12 belong in Group B because they are closer to 9 than to 16. Notice that a
pattern develops: the next subgroup of numbers (to be sent to Group A) will have two more
numbers in it than the previous subgroup, and so on.

Now, consider the difference C−D = (3+4+5+6+13+14+ . . .+19+20+31+32+ . . .+41+
42+57+58+. . .+71+72+91+92+. . .+99+100)−(1+2+7+8+. . .+11+12+21+22+. . .+29+
30+43+44+. . .+55+56+73+74+. . .+89+90). The first four terms in the first set of paren-
theses have the same sum as the first four terms in the second set of parentheses, so C −D =
(13+14+. . .+19+20+31+32+. . .+41+42+57+58+. . .+71+72+91+92+. . .+99+100)−(9+
10+11+12+21+22+. . .+29+30+43+44+. . .+55+56+73+74+. . .+89+90). In the previous
equation, the first eight terms in the first set of parentheses have the same sum as the first eight
terms in the second set of parentheses, so C−D = (31+32+ . . .+41+42+57+58+ . . .+71+
72+91+92+. . .+99+100)−(25+26+. . .+29+30+43+44+. . .+55+56+73+74+. . .+89+90).
In this equation, the first twelve terms in the first set of parentheses have the same sum as the
first twelve terms in the second set of parentheses, so C −D = (57 + 58 + . . .+ 71 + 72 + 91 +
92+ . . .+99+100)−(49+50+ . . .+55+56+73+74+ . . .+89+90). In this equation, the first
sixteen terms in the first set of parentheses have the same sum as the first sixteen terms in
the second set of parentheses, so C−D = (91+ 92 + . . .+ 99+ 100)− (81 +82 + . . .+ 89+ 90).
Now, each set of parentheses has ten terms, and each term in the first set of parentheses is 10
greater than the corresponding term in the second set of parentheses. Therefore, the value of
C −D is 10 · 10 = 100.

I-7. By the Law of Cosines, AC2 = 72 + 242− 2 · 7 · 24 · cosD = 152 + 202− 2 · 15 · 20 · cosB. This
implies 625 − 336 cosD = 625 − 600 cosB, which implies 625 + 336 cosB = 625 − 600 cosB,
so cosB = 0. This means that angles B and D are both right, and also angles A and C are

supplementary. Therefore, the area of ABCD is
1

2
· 7 · 24 +

1

2
· 15 · 20 = 234. Computing the

area differently, 234 =
1

2
·7·15·sinA+

1

2
·20·24·sin(180◦−A) =

585

2
sinA, so sinA =

468

585
=

4

5
.

I-8. Because f(x) ≥ g(x) for all real x, the graph of y = f(x) lies at or above the graph of y = g(x).
Because the graphs of f and g intersect in exactly two distinct points and f is never below g,
the graph of the line y = g(x) is tangent to the “w-shaped” graph of y = f(x) at two points
along the bottom. Let the roots of f(x) = g(x) be r1 and r2. Because the graph is tangent to
the x-axis at both points, both r1 and r2 are double roots of f(x) = g(x). Thus,

f(x)− g(x) = (x− r1)2(x− r2)2.

Either by algebra or by using Vieta’s formulas,

f(x)− (Ax+B) = x4 − 2(r1 + r2)x3 + (r2
1 + 4r1r2 + r2

2)x2 − 2r1r2(r1 + r2)x+ r2
1r

2
2.

Equating coefficients produces the equations −2(r1 + r2) = −2⇒ r1 + r2 = 1 and
r2

1 +4r1r2 +r2
2 = −23, but (r1 +r2)2 = 1, so 1+2r1r2 = −23⇒ r1r2 = −12 and, by inspection,
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r1 and r2 are 4 and −3. Equating the last two coefficients yields 26−A = −2r1r2(r1 +r2) = 24
which implies A = 2 and 127 − B = (r1r2)2 = 144 which implies B = −17. The answer is
(2,−17).
The graphs of f and g are below.

I-9. If a3 +20a2 +3a+18 is divisible by 17, then a3 +20a2 +3a+18−(17a2 +17) = a3 +3a2 +3a+1
is divisible by 17. Factoring, this implies (a+ 1)3 is divisible by 17, and because 17 is prime,
17 divides a+ 1. The least a greater than 2018 such that a+ 1 is a multiple of 17 is 2022.

I-10. For the median to be 9, 9 must be one of the integers. Then, five integers must be greater
than 9 (and there are 6 of those in the set) and five must be less than 9 (and there are 8 of

those in the set). Thus, the desired probability is

(
6
5

)
·
(

8
5

)(
15
11

) =

(
6
5

)
·
(

8
5

)(
15
4

) =
6 · 56

1365
, or

16

65
.



Power Question 2018: Little Kid Triangles

For a nondegenerate triangle in the plane, suppose that its side lengths λ1, λ2, and λ3 satisfy
λ1 ≤ λ2 ≤ λ3. If λ1, λ2, and λ3 are natural numbers, we will refer to the triangle as elementary,
and we may say that it has side lengths λ1 : λ2 : λ3 for convenience (since the ratio of the side
lengths is what determines the angle measures). Suppose also that the triangle’s angle measures (in
degrees) δ1, δ2, and δ3 satisfy δ1 ≤ δ2 ≤ δ3. If δ1, δ2, and δ3 are rational numbers, we will refer to
the triangle as rational. We state that the angle with measure δj is opposite the side with length
λj. Notice that if the three angle measures are known, the side lengths are known up to similar-
ity, and if the side lengths are known, then the angle measures are known. Therefore, we will refer
to a triangle ∆ = 〈δ1, δ2, δ3〉 as a triangle, even though it defines only the similarity type of a triangle.

We will refer to triangles with δ2 = 60 or with δ3 = 120 as Pythagorish.

P-1. a. Write the three side lengths of a triangle that is elementary and rational. [3 pts]

b. Write the three angle measures of a triangle that is rational, has a side of length 1, and
is not elementary. Also write the other two side lengths of the triangle. [3 pts]

P-2. Show that the triangles ∆1 with side lengths 5 : 16 : 19 and ∆2 with side lengths 5 : 7 : 8 are
Pythagorish. [6 pts]

A valid theorem, which we present without proof, says the following.
Suppose that r1 and r2 are rational numbers and neither r1 − r2 nor r1 + r2 is a multiple of 180.
Then the following two statements are equivalent:
Statement 1: There exists a nontrivial linear combination of the numbers in the set {1, cos r◦1, cos r◦2}
that is equal to 0. Said another way, there exist nonzero integers A, B, and C such that
A+B cos r◦1 + C cos r◦2 = 0.
Statement 2: Either both numbers r1 and r2 are integer multiples of 36, or at least one of them is
an integer multiple of 60 or 90.

P-3. Prove that if cos r◦ is rational and if r is rational, then r is an integer multiple of 60 or 90.
[6 pts]

P-4. Prove that if r is an integer multiple of 60 or 90, then cos r◦ is in the set {−1,−1

2
, 0,

1

2
, 1}.

This completes the argument that these five values are the only possible rational values of
cos r◦. [4 pts]

P-5. Let r1 and r2 be rational numbers with 0 < r1 < 90 and 0 < r2 < 90. Prove that
cos r◦1
cos r◦2

is

rational if and only if r1 = r2. [5 pts]

P-6. Now, consider integer solutions (x, y, z) of x2 +vxy+y2 = z2 for various integers v. If (x, y, z)
solves x2 + vxy + y2 = z2 for v = 0, then we call the triple a 0-Pythagorean triple. If
the greatest common divisor of the numbers in the set {x, y, z} is 1, then we call (x, y, z) a
primitive triple.
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186 Power Question 2018: Little Kid Triangles

a. If (x, y, z) solves x2 + vxy + y2 = z2 for v = 1, we call the triple a (1)-Pythagorean
triple. Find, with justification, any primitive 1-Pythagorean triple. [2 pts]

b. If (x, y, z) solves x2 + vxy+ y2 = z2 for v = −1, we call the triple a (−1)-Pythagorean
triple. Find, with justification, any primitive (-1)-Pythagorean triple. [2 pts]

P-7. Suppose that ∆ = 〈δ1, δ2, δ3〉 is an elementary triangle. In almost all cases, δ1, δ2, and δ3

are transcendental numbers (that is, they are not expressible as the solution to a polyno-
mial equation with integer coefficients). There are three cases where δ1, δ2, and δ3 are not
transcendental numbers.

a. Suppose that δ3 = 90. Show that neither δ1 nor δ2 is rational, and that
λ1 : λ2 : λ3 = x : y : z for a uniquely determined ordered primitive 0-Pythagorean triple
(x, y, z). [2 pts]

b. Suppose that δ3 = 120. Show that neither δ1 nor δ2 is rational, and that
λ1 : λ2 : λ3 = x : y : z for a uniquely determined ordered primitive 1-Pythagorean triple
(x, y, z). [2 pts]

c. Suppose that δ2 = 60. Show that neither δ1 nor δ3 is rational unless δ1 = δ3 = 60,
and that λ1 : λ2 : λ3 = x : y : z for a uniquely determined ordered primitive (−1)-
Pythagorean triple (x, y, z). [2 pts]

P-8. It is well known that, given a 0-Pythagorean triple (x, y, z), there exists a unique pair of
relatively prime positive integers (m,n) such that m − n is positive and odd and such that
{x, y} = {2mn,m2 − n2} and z = m2 + n2. Show that given a 1-Pythagorean triple (x, y, z),
there exists a pair of relatively prime positive integers (m,n) such that m− n is positive and
such that {x, y} = {2mn+ n2,m2 − n2} and z = m2 +mn+ n2. [4 pts]

P-9. The previous parts of this Power Question establish that if all of the angle degree-measures
and all of the side lengths of a triangle are rational, then the triangle is equilateral. So, let’s
relax the parameters a bit and see what happens. Call a triangle elementish if at least two
of the side lengths are natural numbers. Clearly, every elementary triangle is also elementish.
Prove that for any rational elementish triangle ∆, either ∆ is isosceles or ∆ has angle measures
of 30◦, 60◦, and 90◦. [5 pts]

P-10. Now, consider triangles whose angle degree-measures are all rational numbers and whose side
lengths are all of the form a

√
b+c for integers a, b, and c where b is not divisible by the square of

any prime. There are only fourteen triangles with this property. Some examples have already
been discussed. ∆1 = 〈60, 60, 60〉 has side lengths in the ratio 1 : 1 : 1. ∆2 = 〈30, 30, 120〉 has
side lengths in the ratio 1 : 1 :

√
3. ∆3 = 〈30, 60, 90〉 has side lengths in the ratio 1 :

√
3 : 2.

List the others in a similar way, naming their angle measures and side lengths. [5 pts]



Solutions to 2018 Power Question

P-1. a. The simplest example is the triangle whose side lengths are all 1 and whose angles all
measure 60◦. This is not the only such triangle; however, all of the triangles of this type
are equilateral.

b. One such triangle has angle measures 30, 60, and 90. In this case, if the smallest side
has length 1, the other two sides have lengths

√
3 and 2.

P-2. Use the Law of Cosines. For ∆1, 192 = 52 + 162 − 2 · 5 · 16 · cosC, and solving this yields

cosC =
−1

2
, so angle C has measure 120, as needed. Similarly, for ∆2, it follows that

72 = 52 + 82 − 2 · 5 · 8 · cosB → cosB =
1

2
, so angle B has measure 60, as needed.

P-3. Assume that r is not an integer multiple of 60 or 90. Choose a rational number q with
0 < q < 1 such that neither r− q nor r+ q is a multiple of 180. It is not possible that both r
and q are both integer multiples of 36, and neither r nor q is an integer multiple of 60 or 90,
so by the given theorem, there does not exist a nontrivial linear combination of the numbers
in the set {1, cos r◦, cos q◦} that is equal to 0. Therefore, cos r◦ is not rational. This proves
the contrapositive of the statement in P-3, and so the result is established.

P-4. This result is established by the fact that f(x) = cos x◦ is even with period 360. A simple
check of cosine values for integer multiples of 60 and 90 in the interval 0 ≤ x < 360 finishes
the argument.

P-5. Suppose first that r1 6= r2 and that
cos r◦1
cos r◦2

is rational. Then neither r1 − r2 nor r1 + r2 are

multiples of 180, so by the given theorem, either r1 and r2 are integer multiples of 36 or one

of them is 60. In the first case, either
cos r◦1
cos r◦2

or
cos r◦2
cos r◦1

equals

√
5 + 1√
5− 1

=

√
5 + 3

2
, and so

cos r◦1
cos r◦2

is irrational, which is a contradiction. In the second case, suppose that it is r1 that is equal
to 60. Then cos r◦1 = 1

2
is rational, and so cos r◦2 is also rational. By P-4, this implies r2 = 60,

a contradiction.

The converse is obvious. If r1 = r2, then
cos r◦1
cos r◦2

= 1, which is rational.

P-6. Answers will vary, as will the explanations. As an example, (3, 5, 7) is a 1-Pythagorean triple
and (3, 8, 7) is a (−1)-Pythagorean triple.

P-7. If the three sides of a triangle are rational, then the cosines of the three angles are rational,
which is only possible if the degree measures of the angles are multiples of 60 or 90.

a. If δ1 or δ2 were rational, it would require that both are rational. This would imply
δ1 = δ2 = 60, which is impossible by the sum of the angle measures of a triangle. Thus,
neither δ1 nor δ2 is rational. Clearly, λ2

1 + λ2
2 = λ2

3 by the Pythagorean Theorem, and
dividing each side length by the greatest common factor of the set of side lengths results
in a unique primitive 0-Pythagorean triple.
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188 Solutions to 2018 Power Question

b. If δ1 or δ2 were rational, it would require that both are rational. This would imply
δ1 = δ2 = 60, which is impossible by the sum of the angle measures of a triangle. Thus,
neither δ1 nor δ2 is rational. By the Law of Cosines, λ2

1 +λ2
2−2λ1λ2 cos 120◦ = λ2

3, which
implies λ2

1 +λ1λ2 +λ2
2 = λ2

3, and dividing each side length by the greatest common factor
of the set of side lengths results in a unique primitive 1-Pythagorean triple.

c. If δ1 or δ3 were rational, it would require that both are rational. This would imply
δ1 = δ3 = 60. In this case, λ1 : λ2 : λ3 = 1 : 1 : 1, which satisfies the requirement of
a (−1)-Pythagorean triple. If d1 < 60, then neither δ1 nor δ3 is rational, for reasons
similar to the above argument. By the Law of Cosines, λ2

1 + λ2
2 − 2λ1λ2 cos 60◦ = λ2

3,
which implies λ2

1−λ1λ2 +λ2
2 = λ2

3, and dividing each side length by the greatest common
factor of the set of side lengths results in a unique primitive (−1)-Pythagorean triple.

P-8. Because (x, y, z) is a 1-Pythagorean triple, it is true that x2 + xy + y2 = z2. This implies(x
z

)2

+
x

z
· y
z

+
(y
z

)2

= 1. There exist relatively prime integers m and n such that
y + z

x
=
m

n
.

Notice that m > n. For these values of m and n, it is true that (m2−n2)2 + (2mn+n2)(m2−
n2)+(2mn+n2)2 = (m4−2m2n2 +n4)+(2m3n−2mn3 +m2n2−n4)+(4m2n2 +4mn3 +n4) =
m4 + 2m3n+ 3m2n2 + 2mn3 + n4 = (m2 +mn+ n2)2, as desired.

P-9. Let ∆ = 〈δ1, δ2, δ3〉 be a triangle with side lengths in the ratio λ1 : λ2 : λ3. Suppose that ∆
is rational and elementish. Therefore, two of the side lengths `m and `n are rational. By the

Law of Sines,
`m
`n

=
sin δ◦m
sin δ◦n

, so
cos(90− δm)◦

cos(90− δn)◦
is rational. Assume without loss of generality

that δm ≥ δn. This implies that δn < 90. Proceed by cases.
If δm > 90, then by P-5, δm−90 = 90−δn, and this implies δm+δn = 180, which is impossible.
If δm = 90, then by P-3, 90− δn = 60, so the triangle has angle measures of 30◦, 60◦, and 90◦.
If δm < 90, then by P-5, δm = δn, and the triangle is isosceles. This completes the proof.

P-10. The rest of the list is as follows. It can be confirmed by arithmetic and trigonometry.
∆4 = 〈15, 15, 150〉 has side lengths in the ratio

√
2 :
√

2 :
√

3 + 1.
∆5 = 〈30, 75, 75〉 has side lengths in the ratio

√
3− 1 :

√
2 :
√

2.
∆6 = 〈36, 36, 108〉 has side lengths in the ratio 2 : 2 :

√
5 + 1.

∆7 = 〈36, 72, 72〉 has side lengths in the ratio
√

5− 1 : 2 : 2.
∆8 = 〈45, 45, 90〉 has side lengths in the ratio 1 : 1 :

√
2.

∆9 = 〈15, 30, 135〉 has side lengths in the ratio
√

3− 1 :
√

2 : 2.
∆10 = 〈15, 45, 120〉 has side lengths in the ratio

√
3− 1 : 2 :

√
6.

∆11 = 〈15, 60, 105〉 has side lengths in the ratio
√

3− 1 :
√

6 :
√

3 + 1.
∆12 = 〈15, 75, 90〉 has side lengths in the ratio

√
3− 1 :

√
3 + 1 : 2

√
2.

∆13 = 〈30, 45, 105〉 has side lengths in the ratio
√

2 : 2 :
√

3 + 1.
∆14 = 〈45, 60, 75〉 has side lengths in the ratio 2 :

√
6 :
√

3 + 1.

Author’s Note: This Power Question was inspired by the article More Grade School Triangles
in the April 2017 edition of the American Mathematican Monthly, published by the MAA. The
author of the article is Arno Berger.



2018 Relay Problems

R1-1. Some four-digit numbers of the form 2 0A 8 are divisible by 12. Compute the sum of all
possible values of A such that 2 0A 8 is divisible by 12.

R1-2. Let N be the number you will receive. Compute the number of ordered pairs of positive integers

(x, y) with x < y for which
xy

x+ y
= N .

R1-3. Let N be the number you will receive. Compute the number of lattice points in the interior of
the graph of |x|+ |y| < N .

R2-1. Suppose that n leaves a remainder of 24 when divided by 77. Given that n leaves a remainder
of A when divided by 7 and a remainder of B when divided by 11, compute A+B.

R2-2. Let N be the number you will receive. Suppose that a = logp q and b = logq p. Given that
a+ b = N , compute a2 + b2.

R2-3. Let N be the number you will receive. Two concentric circles have radii R and r. The annulus
between the circles is divided into N regions of equal area by lines that pass through the
common center of both circles. The area of one of the N regions of the annulus is 2018π.
Given that R− r = N , compute r.
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2018 Relay Answers

R1-1. 10

R1-2. 4

R1-3. 25

R2-1. 5

R2-2. 23

R2-3. 1995
2 or 9971

2 or 997.5
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2018 Relay Solutions

R1-1. To be divisible by 12, the number must be divisible by 3 and 4. Applying the divisibility test
for 4, the two-digit number A 8 must be a multiple of 4, so A must be even. Applying the
divisibility test for 3, the sum 10 + A must be divisible by 3, so A is 2 or 5 or 8. The values
of A that satisfy both divisibility conditions are 2 and 8, which sum to 10.

R1-2. Solving for y in terms of x, xy = Nx+Ny ⇒ y =
Nx

x−N =
Nx−N2

x−N +
N2

x−N = N+
N2

x−N .

Therefore, if y is to be an integer, (x−N) must be a factor of N2. Substituting, (x−10) must
be a factor of 100. Therefore, x is in the set {11, 12, 14, 15, 20, 30, 35, 60, 110}. Solving for y
reveals that the greatest values are paired with the least to form ordered pairs (x, y). The
ordered pairs are (11, 110), (12, 60), (14, 35), (15, 30), (20, 20) (and this last one is rejected).
There are 4 ordered pairs.

R1-3. For N = 1, there is only the origin in the set of lattice points.
For N = 2, there are three lattice points on the y-axis and the points (±1, 0), a total of 5.
For N = 3, there are five lattice points on the y-axis, three at each of x = ±1, and the points
(±2, 0), a total of 13.
Notice that the number of lattice points goes up by multiples of 4. You are now ready to
predict, and you can do so for the passed value of 4. The answer is 13 + 12 = 25.

R2-1. Notice that n is of the form 77k + 24. When n is divided by 7, the 7 divides 77k, and the 24
leaves a remainder of 3 when divided by 7, so A = 3. Similarly, 24 leaves a remainder of 2
when divided by 11, so B = 2. The answer is A+B = 5.

R2-2. By algebra, (a+b)2 = a2+b2+2ab = N2 ⇒ a2+b2 = N2−2ab. Notice that ab =
ln p

ln q
· ln q
ln p

= 1,

so the answer is N2 − 2. Substituting, the value to pass is 23.

R2-3. The area of one section of the annulus is
π

N
(R2 − r2), so π(R + r)(R − r) = 2018 · N · π.

Because R − r = N , this implies R + r = 2018. Adding the two linear equations together,

2R = 2018 +N → R =
2018 +N

2
, so r =

2018 +N

2
−N =

2018−N
2

=
1995

2
.
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2018 Tiebreaker Problems

TB-1. Compute the sum of all positive integers n for which n2 + 3n+ 2018 is a perfect square.

TB-2. Given 4ABC with D on AB and E on AC such that CD bisects ∠ACB and BE bisects
∠ABC. Given that AD = 3, AE = 4, and EC = 8, compute BC.
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2018 Tiebreaker Answers

TB-1. 2193

TB-2. 12
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2018 Tiebreaker Solutions

TB-1. Because n2 + 3n+ 2018 is a perfect square, n2 + 3n+ 2018 = (n+d)2 for some positive integer
d. By algebra, n2 + 3n + 2018 = n2 + 2nd + d2 → 2018 − d2 = n(2d − 3). This implies that
d2 < 2018 < 2025, so d < 45. Because (2d−3) is a factor of 2018−d2, it must also be a factor
of 8072− 4d2. Notice also that (2d− 3) is a factor of (2d− 3)(2d+ 3) = 4d2− 9, so (2d− 3) is
a factor of (8072− 4d2) + (4d2 − 9) = 8072− 9 = 8063. Because 8063 = 11 · 733, and because
11 and 733 are prime, (2d − 3) has the value 1 or 11 or 733 or 8063. The latter two values
contradict the fact that d < 45, so solve 2d− 3 = 1 to obtain d = 2 and 2d− 3 = 11 to obtain
d = 7. If d = 2, then 2018−22 = n·1→ n = 2014. If d = 7, then 2018−72 = n·11→ n = 179.
The sum of the two possible positive integer values of n is 2014 + 179 = 2193.

TB-2. Because BE is an angle bisector, it splits the side of the triangle to which it is drawn in the
ratio of the other two sides. Thus, AB = 4x and BC = 8x for some number x. Similarly,

AD = 12y and DB = 8xy for some number y. Because AD = 3, 12y = 3 → y =
1

4
, and

so DB = 8x · 1

4
= 2x. Because AD + DB = AB, 3 + 2x = 4x, which implies 2x = 3, so

BC = 8x = 12.
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2019 Team Problems

T-1. In the figure, PQRS is a unit square. Points A, B, C, and D are on PS, SR, PQ, and QR,

respectively such that AS = BS = CQ = DQ <
1

2
. Points M and N are the midpoints of

AB and CD, respectively. Given that MN = 1, compute AB.

T-2. Given that a and b are integers with 1 ≤ a ≤ 2019 and 1 < b ≤ 2019, compute the number of
solutions (a, b) to

logb
(
alogb a

)
= logb a.

T-3. Square ABCD has side length 8. A circle passes through A and B, and is tangent to side
CD. Compute the radius of the circle.

T-4. A state has ten cities: Allenberg, Bergville, Centerville, Downtown, Ellocity, Funkytown,
Gutenberg, Halotown, Ipswich, and Johnsonville. Every city except Johnsonville is connected
to every other city except Johnsonville by two separate roads. Johnsonville is on an island,
and is only connected to Allenberg and Bergville. A couple on their honeymoon decides to
tour the state, starting at Centerville, travelling to every city exactly once, and ending at
Downtown. Compute the number of distinct ways they can take their trip. Note that only the
order in which the cities are visited matters to determine a trip.

T-5. Richard is reading a 1225-page novel. On the first day, he reads through page x of the novel,
completing exactly m% of the novel, where m is a two-digit number. The next day, he reads
through page y of the novel. After the two days of reading, Richard completes exactly n%
of the novel, where n is the two-digit integer formed by reversing the digits of m. Compute
x+ y.

T-6. Compute the number of nine-digit numbers AB C AB C AB C, with A 6= 0 and with A, B,
and C not necessarily distinct, that are divisible by 27.
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T-7. Let S be the set of points equidistant from the point F (1, 2) and the line 2x + y = 1. The
domain of the relation S is {x | x ≥ k}. Compute k.

T-8. The number 2019 has a digit sum of 12, and the number 2019 is not divisible by 12. Compute
the number of four-digit integers N with 1000 ≤ N ≤ 9999 for which N has a digit sum of 12
and for which N is not divisible by 12.

T-9. The graph of y = − tan(2x + A) has an asymptote at x =
π

5
for various values of A. Let

the increasing sequence a1, a2, a3, . . . denote the positive values of A for which the graph of

y = − tan(2x+ A) has an asymptote at x =
π

5
. Compute a2019.

T-10. When two different cubic polynomials, a quartic polynomial, the line y = 0, and the line x = 0
are all graphed in the Cartesian coordinate plane, the graphs divide the plane into different
regions, some bounded and some unbounded. Let N be the number of regions formed by the
graphs. Compute the sum of all possible N .



2019 Team Answers

T-1.
√

2− 1

T-2. 4036

T-3. 5

T-4. 1440

T-5. 1617

T-6. 100

T-7.
1

4

T-8. 248

T-9.
20181π

10

T-10. 475
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2019 Team Solutions

T-1. By the Pythagorean Theorem, QS =
√

2. Because 4ASM is isosceles and right, SM =
AB

2
.

Similarly, NQ =
AB

2
. Thus, QS =

√
2 = SM + MN + NQ = AB + 1 and AB =

√
2− 1.

T-2. Using the power rule of logarithms, the given equation implies logb a· logb a = logb a, which has
solutions if logb a = 0 or logb a = 1. The first equation has a solution if and only if a = 1, and
so any pair of the form (1, b) is a solution. There are 2018 solutions of this type. The second
equation has solution if and only if a = b, and so any pair of the form (b, b) is a solution.
There are 2018 solutions of this type. None of the solutions of the type (1, b) are also solutions
of the type (b, b) because b 6= 1. Thus the number of solutions is 2018 + 2018 = 4036.

T-3. Consider the following diagram.

A

B C

D

O r8− r

4
r

Let the radius of the circle be r, and let its center be O. Then the distance from O to CD is r
and the distance from O to AB is 8− r. The foot of the altitude from O to AB splits 4OAB
into two right triangles, each with legs of length 4 and 8 − r, and each with hypotenuse r.
Therefore, from the Pythagorean Theorem,

42 + (8− r)2 = r2 =⇒ 80− 16r + r2 = r2 =⇒ 80 = 16r =⇒ r = 5.

Alternate Solution: Let the point of tangency of the circle with CD be E. Note that
triangle ABE has area equal to AB·BE·EA

4r
, while also having base AB = 8 and height 8 and

thus its area is 8·8
2

= 32; set these two quantities equal to solve for r.

T-4. The trip can be thought of as an ordering of the letters A through J , with three conditions:
C must be at the start, D must be at the end, and A, J,B or B, J,A must appear some-
where. Each of these arrangements corresponds to a unique honeymoon trip, and each trip
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corresponds to a letter ordering, so there are the same number of letter orderings as trips. It
suffices to count the number of letter orderings. To do this, choose where city J will land in the
ordering, then how A and B will be oriented about J , and then how the remaining letters will
be arranged. There are six ways to choose J ’s position, two ways to choose the orientation of
A and B, and 5! ways to order the remaining letters. Thus there are 6 ·2 ·5! = 12 ·120 = 1440
total possible honeymoon trips.

T-5. Because 1225 = 25 · 49 = 52 · 72 and m and n are two-digit integers,
m

100
and

n

100
in reduced

form must be of the form
k

25
for some integer k. Possible values of k are 3, 4, . . ., 24. So

possible values of m and n are 12, 16, . . ., 96. After examining the possible values of m and n,
the only values of m and n for which the one is formed by reversing the digits of the other are

48 and 84. Thus x+ y =
48

100
· 1225 +

84

100
· 1225 =

132

100
· 52 · 72 =

33

25
· 25 · 49 = 33 · 49 = 1617.

T-6. Note that 103 − 1 = 999 = 27 · 37. Therefore 103 ≡ 1 mod 27. As a result,

AB C AB C AB C = A(108 + 105 + 102) +B(107 + 104 + 10) + C(106 + 103 + 1)

≡ A(102 + 102 + 102) +B(10 + 10 + 10) + C(1 + 1 + 1) mod 27

≡ 3 · AB C mod 27.

This means that AB C AB C AB C is divisible by 27 if and only if 3 · AB C is divisible by
27 (or, alternatively, if AB C is divisible by 9). It therefore suffices to find the number of
three-digit numbers AB C, with A 6= 0, that are divisible by 9. The greatest three-digit
multiple of 9 is 999 = 9 · 111, and the least is 108 = 9 · 12, so there are 111 − 12 + 1 = 100
such numbers. Therefore there are 100 nine-digit numbers of the desired form.

T-7. The set of points S is a parabola whose axis of symmetry is not parallel to either of the
coordinate axes. Let an arbitrary point P in S have coordinates (x, y). Using the formulas for
distances point-to-point and point-to-line, the coordinates of P satisfy

√
(x− 1)2 + (y − 2)2 =

|2x+ y − 1|√
22 + 12

. Squaring both sides, (x − 1)2 + (y − 2)2 =
(2x+ y − 1)2

5
, which implies

5(x2 − 2x + 1 + y2 − 4y + 4) = 4x2 + y2 + 1 + 4xy − 4x − 2y, which implies x2 − 4xy +
4y2 − 6x − 18y + 24 = 0. Writing this as a quadratic equation in y, this is equivalent to
4y2 − (4x + 18)y + (x2 − 6x + 24) = 0. Using the quadratic formula to solve for y in terms

of x yields y =
(4x+ 18)±

√
(4x+ 18)2 − 16(x2 − 6x+ 24)

8
=

(2x+ 9)±
√

60x− 15

4
. Thus

the values of x in the domain are precisely the solutions to 60x− 15 ≥ 0→ x ≥ 1

4
, so k =

1

4
.

The graph is shown in the figure.
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T-8. First, compute the number of four-digit integers that have a digit sum of 12. Then compute
the number of those that are multiples of 12.

Use the “balls and urns” method to count the number of four-digit integers whose digit sum is
12. That is, imagine that there are 12 balls in a line, and some dividers are inserted between
the balls to assign them into distinct groups (“urns”). (More information on this appears at
https://artofproblemsolving.com/wiki/index.php/Ball-and-urn, among other places.)
To divide the 12 balls into 4 urns requires 3 dividers, so the number of ways to break 12 balls

into 4 urns is

Ç
12 + 3

3

å
=

Ç
15

3

å
=

15 · 14 · 13

3 · 2 · 1 = 5 · 7 · 13 = 5 · 91 = 455. However, not all

of these are possible four-digit numbers in base 10. For example, (12) is not a digit in base
10, so the 4 numbers (12)000, 0(12)00, 00(12)0, and 000(12) must be discounted. So, too,
must all numbers with (11) as a digit. There are 4 places to put the (11) and 3 remaining
places to put the 1 that makes the digit sum 12, so there are 4 · 3 = 12 four-digit numbers
with (11) as a digit, and these are discounted. Also, all numbers with (10) as a digit must be
discounted. These numbers come in two kinds: (10)200 (and all its permutations) and (10)110
(and all its permutations). In each case, there are 4 · 3 = 12 of them, and all 12 + 12 = 24
four-digit numbers are discounted. Lastly, discount all numbers with a 0 in the thousands

place. Using “balls and urns” again, there are

Ç
12 + 2

2

å
=

Ç
14

2

å
=

14 · 13

2 · 1 = 7 · 13 = 91 of

these, but 3 + 6 + 6 + 3 = 18 of these have been discounted already in previous cases, so there
are 91 − 18 = 73 more to discount. Thus there are 455 − 4 − 12 − 24 − 73 = 342 four-digit
numbers with a digit sum of 12.

A number is divisible by 12 if it is divisible by 3 and 4. The digit sum of 12 assures that
the numbers with digit sum 12 are divisible by 3, so count the number of numbers that are
divisible by 4. The last two digits are relevant here, and a careful accounting reveals the
following:

https://artofproblemsolving.com/wiki/index.php/Ball-and-urn
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Last 2 dig Numbers divisible by 4 Count Last 2 dig Numbers divisible by 4 Count
00 3900, 4800, . . . , 9300 7 52 1452, 2352, . . . , 5052 5
04 1704, 2604, . . . , 8004 8 56 1056 1
08 1308, 2208, . . . , 4008 4 60 1560, 2460, . . . , 6060 6
12 1812, 2712, . . . , 9012 9 64 1164, 2064 2
16 1416, 2316, . . . , 5016 5 68 None 0
20 1920, 2820, . . . , 9120 9 72 1272, 2172, 3072 3
24 1524, 2424, . . . , 6024 6 76 None 0
28 1128, 2028 2 80 1380, 2280, . . . , 4080 4
32 1632, 2532, . . . , 7032 7 84 None 0
36 1236, 2136, 3036 3 88 None 0
40 1740, 2640, . . . , 8040 8 92 1092 1
44 1344, 2244, . . . , 4044 4 96 None 0
48 None 0

There are 94 multiples of 12 with a digit sum of 12, so the answer is 342−94 = 248 four-digit
numbers that have a digit sum of 12 and that are not multiples of 12.

This question is similar to Question T-8 from NYSML2009. The original question was written
by Dr. Leo Schneider, who authored NYSML from 2001 to 2010. We use the question here to
honor his memory.

T-9. The period of the graph of y = − tan θ is π, so the period of y = − tan(2x + A) is π/2. The
asymptotes of y = − tan(2x+A) occur at multiples of π/2 away from x = K where K is the

least positive number for which x = K is an asymptote. Set 2x + A =
π

2
+ n · π. Then set

x = π/5 to obtain that A = π/10 if n = 0, and this is the least positive number for which

there is an asymptote so K = π/10 and a2019 = π/10 + 2018π =
20181π

10
.

T-10. If an infinite, unbounded, non-self-intersecting curve is drawn in the plane, then it splits the
plane into two regions. If there are k such curves with none intersecting, then they split the
plane into k + 1 regions. If an additional curve is drawn and it intersects the other curves
at i points, then this curve will increase the number of regions by i + 1: one region by the
very introduction of another curve, and i regions from the intersections. This is true when
two curves intersect at a single point but also when the points of intersection are tangency
points and at points where more than two curves intersect. This can be seen by enclosing
these i points in a circle and seeing how many regions inside the circle are formed when the
additional curve is drawn. Because all of the intersection points are contained inside the circle,
the number of regions inside the circle will be equal to the number of regions if the circle is
removed. An example is shown below: a cubic that runs from the left to the right creates
five new regions when it hits the dots shown, where the fifth dot represents the existing cubic
making a fifth region.
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Because the x-axis and the y-axis intersect at (0, 0), it is guaranteed that there is at least one
point of intersection. It is possible to draw two distinct cubic functions and a quartic that
also intersect at only (0, 0). A diagram is shown below, and it motivates the understanding
that the minimum number of regions is 10.

Therefore if k curves are drawn that intersect in i places, they create 1 +k+ i regions. As k is
fixed at 5 as per the problem statement, find what the possible values of i are. To minimize
i, find the least possible number of intersection points. There is one guaranteed intersection:
(0, 0), where the x-axis and y-axis meet. To have this be the only intersection point, choosing
the cubics y = x3 and y = 2x3 and the quartic y = x2(x2 + 100) ensures that the polynomials
all intersect the x-axis at only (0, 0), they all pass the y-axis at (0, 0), and they don’t intersect
each other anywhere else. Thus the minimum possible value of i is 1.

The maximum value i is attained when the cubics, the quartic, and the lines intersect in
as many places as possible. The y-axis is guaranteed to intersect the other curves exactly four
times, and the rest of the intersection points must come from the other curves. Note that
the other four curves are all polynomial curves: one degree four polynomial, two degree three
polynomials, and one constant polynomial (y = 0, the x-axis). If two polynomials f(x) and
g(x) have degrees m and n respectively, then their intersections are when f(x) − g(x) = 0,
and the polynomial f(x)− g(x) can have degree anywhere between 0 and max(m,n), so there
are anywhere between 0 and max(m,n) points of intersection between f and g. Therefore
the three non-constant polynomials have up to 3 + 3 + 4 = 10 intersections with the x-axis,
the cubics have up to 3 intersections with each other, and the quartic has up to 4 + 4 = 8
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intersections with the two cubics. Therefore there are at most 10 + 3 + 8 = 21 intersections
among the polynomial curves, plus 4 from the y-axis intersections, giving a maximum value
of 21 + 4 = 25 for i. Note that the above argument demonstrates that i can be any number
from 1 to 25 inclusive, so N = 1 +k+ i = 6 + i can be anywhere from 7 to 31 inclusive. There
are 31− 7 + 1 = 25 possible values for N , and the sum of all these values is 25 · 10+31

2
= 475.
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I-1. For two positive numbers a and b, with a > b, their quotient, difference, and sum are in the
respective ratio 20 : 1 : 9. Compute a.

I-2. The graphs of a linear function y = f(x), its inverse y = f−1(x), and the angle bisector of the
acute angle between the graphs are shown in the diagram below. All three lines pass through
the origin. Given that the sum of the slopes of the three lines is 5, compute the sum of the
squares of the slopes of the three lines.

I-3. The number 157751 is a palindrome because it reads the same forward and backward. The
odometer of a car shows 157751 miles at the beginning of a trip. At the end of the trip, the
odometer reading is the next greater palindrome. Compute the number of miles in the trip.

I-4. Compute the positive integer k for which there are exactly 2019 integer values of x such that√
(k + x)(k − x)− 4(1− x) is a real number.

I-5. Let the sequence {an} be defined by a1 = 64 and an = an−1 + 8 for n ≥ 2. Compute the
product

(
loga1 a2

) (
loga2 a3

) (
loga3 a4

)
· · ·
(
loga120 a121

)
.

I-6. Let m and n be the roots of x2 − 20x− 19 = 0 with m < n. Compute

2m2 + 5mn− n2 − 20m+ 40n+ 19.
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I-7. An isosceles trapezoid has diagonals of length 13 and legs of length 8. Compute the product
of the lengths of its bases.

I-8. A sequence of numbers {an} is determined as follows. Let a0 = 0. For every n ≥ 1, determine
an by flipping a fair coin. If the coin comes up heads, then an = an−1 + 1. If the coin comes
up tails, then an = an−1 − 1. Given that a10 = 0, compute the probability that ai = 1 and
aj = −1 for some i and j each between 0 and 10.

I-9. The number 2019 = 1 + 169 + 1849 can be expressed as the sum of three odd perfect squares.
Compute the least integer N with N > 2019 that can be expressed as the sum of three odd
perfect squares.

I-10. In 4ABC, AB = 13, BC = 14, and AC = 15. Point D is on BC such that AD bisects ∠A
and point E is on

−−→
AD such that CE ⊥ −−→AD. Compute the area of 4BEA.



2019 Individual Answers

I-1.
5

16
or 0.3125

I-2. 15

I-3. 1100

I-4. 1009

I-5.
5

3
or 1

2

3
or 1.6

I-6. 343

I-7. 105

I-8.
2

3
or 0.6

I-9. 2027

I-10. 42

207



2019 Individual Solutions

I-1. For some value of k, it is true that
a

b
= 20k, a− b = k, and a+ b = 9k. Adding the last two

equations yields 2a = 10k → a = 5k. Substituting,
5k

b
= 20k → b =

1

4
. Substituting again,

5k − 1

4
= k → k =

1

16
→ a = 5 · 1

16
=

5

16
.

I-2. Let f(x) = mx; then f−1(x) =
1

m
x. The graph of f−1 is obtained by reflecting f over y = x,

so the angle bisector of the acute angle is y = x. The sum of the slopes of the three lines is

m+1+
1

m
= 5, which implies m+

1

m
= 4. Squaring both sides yields m2 +2+

1

m2
= 16. Now

notice that the answer to the question is the value of m2 + 1 +
1

m2
, so subtract 1 to obtain

16− 1 = 15.

I-3. The next greater palindrome would begin 15 and must have the next digit greater than 7 in
the hundreds place, so the next greater palindrome is 158851. The car’s trip was therefore
158851− 157751 = 1100 miles.

I-4. Simplify the radicand to obtain
√

(k + x)(k − x)− 4(1− x) =
√
k2 − (x2 − 4x+ 4) which

is equivalent to
√
k2 − (x− 2)2. Because the radicand is nonnegative, (x − 2)2 ≤ k2 which

implies −k ≤ x−2 ≤ k and also 2−k ≤ x ≤ k+2. The number of integers between 2−k and
k+ 2 inclusive is k+ 2− (2−k) + 1 = 2k+ 1. Equating this to 2019 and solving 2k+ 1 = 2019
yields k = 1009.

I-5. Notice that the sequence {an} is arithmetic with a common difference of 8. Thus it follows that
a121 = 64+8·120 = 1024. The product is equal to (log64 72) (log72 80) (log80 88) · · · (log1016 1024),

or log64 1024, which is equal to
log 72

log 64
· log 80

log 72
· log 88

log 80
· . . . · log 1024

log 1016
, or

log 1024

log 64
=

log2 1024

log2 64
=

10

6
=

5

3
.

I-6. Notice that the sum of the roots is m + n = 20 by Viete’s formulas, and (m + n)2 =
m2 + 2mn + n2. Also by Vieta’s formulas, the product of the roots is mn = −19 and
so 3mn = −57. Because m is a root of the given equation, m2 − 20m − 19 = 0. Adding,
m2+2mn+n2+3mn+m2−20m−19 = 2m2+5mn+n2−20m−19 = 400−57+0 = 343. This is
close to the desired expression, differing by−2n2+40n+38, which is equal to−2(n2−20n−19),
which equals 0. Thus the value of 2m2 + 5mn− n2 − 20m+ 40n+ 19 is 343.

This question is similar to Question I-6 from NYSML1994. Good math never goes bad!
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I-7. Name the isosceles trapezoid ABCD with BC ‖ AD and AD > BC. Consider the diagram,
which labels AD = y and BC = x and CE = h where CE ⊥ AD.

The problem statement implies AB = CD = 8 and AC = BD = 13. By symmetry,

ED =
1

2
(y − x) and AE = y − 1

2
(y − x) =

1

2
(y + x). Applying the Pythagorean Theorem to

4AEC and4DEC,

Å
1

2
(y + x)

ã2

+h2 = 169 and

Å
1

2
(y − x)

ã2

+h2 = 64. Subtracting the sec-

ond equation from the first yields
1

4
(y2+2xy+x2)− 1

4
(y2−2xy+x2) =

1

2
xy+

1

2
xy = xy = 105.

Alternate Solution: Because isosceles trapezoids are cyclic, use Ptolemy’s Theorem. Thus
solve 8 · 8 +BC · AD = 13 · 13 to find that BC · AD = 169− 64 = 105.

I-8. Because a10 = 0, the first ten tosses consist of five heads and five tails, so there are

Ç
10

5

å
= 252

possible toss sequences. To solve the problem, determine how many of these sequences have
both positive and negative numbers in the first ten values. There are three types of sequences:
(a) those that contain only nonnegative values, (b) those that contain only nonpositive values,
and (c) those that contain both positive and negative values. By symmetry, there are equal
numbers of sequences of the types (a) and (b). The answer to the problem is the number of
(c)-type sequences, which can be found by computing the number of (a)-type sequences and
subtracting twice that value from 252. So count how many sequences contain only nonnega-
tive values. For this to happen, the total number of heads thrown at any particular point in
the sequence must be greater than or equal to the number of tails thrown.

Proceed in the following way. Consider moving a token along the grid below, starting in
the upper-left corner space. Any time a coin comes up heads, move the token one space to
the right. Any time a coin comes up tails, move the token one space down. Because there
are five heads and five tails thrown, the token must end up in the lower-right corner space.
Because the total number of heads must at all times be greater than or equal to the total
number of tails, the token cannot move into any of the blacked-out spaces. The number in
each space indicates the total possible number of paths that lead to that space. Because each
space can only be reached from the space above or the space to the left, the total number of
legal paths leading to any space equals the sum of the number of paths to the space above
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and the number of paths to the space to the left. Reading off the number in the bottom right
indicates that there are 42 possible paths and therefore 42 possible (a)-type sequences.

Therefore there are 252−42−42 = 168 (c)-type sequences, hence the probability of obtaining

such a sequence is
168

252
=

2

3
.

I-9. Starting with the given equation 1 + 169 + 1849 = 2019, substituting 9 for 1 yields 9 + 169 +
1849 = 2027. Thus the least N greater than 2019 that can be expressed as three odd perfect
squares is no greater than 2027. To establish that 2027 is indeed the desired number, consider
that every odd perfect square is one more than a multiple of 8, so the sum of three odd perfect
squares must be three more than a multiple of 8. The least number greater than 2019 with
this property is 2027, so the answer must be 2027.

I-10. The area of4BEA is
1

2
·AB ·AE ·sinBAE =

1

2
·13·AE ·sinBAE. Because AE = 15·cosCAE,

the area of 4BEA is
1

2
· 13 · 15 · cosCAE · sinBAE =

1

2
· 13 · 15 · sinBAC

2
. This is equivalent

to one-half the area of 4ABC, or 42.



Power Question 2019: Balanced Factorizations

Suppose that an integer n is factored into a product n = a1a2a3 · · · ak. Call this factorization
balanced if the sum of the factors is 0. That is, the factorization is balanced if

∑k
i=1 ai = 0. Note

that, in general, the ai’s need not be integers unless otherwise stated.

P-1. a. Find a balanced factorization of 12 into three integers. [2 pts]

b. Find a balanced factorization of 24 into four integers. [2 pts]

c. Find a balanced factorization of 240 into five integers. [2 pts]

P-2. There exists a balanced factorization of 2 into four rational numbers two of which are −4 and
1

6
. Find the other two rational numbers in the balanced factorization. [6 pts]

P-3. Show that there is no balanced factorization of 12 into four rational numbers, two of which
are 1 and 2. [4 pts]

P-4. a. Find a balanced factorization of 12 into five not-necessarily-distinct rational numbers,
three of which are integers. [2 pts]

b. Find a balanced factorization of any integer n into five not-necessarily-distinct rational
numbers. [3 pts]

P-5. a. Find a balanced factorization of 28 = 7(7 − 3) into six not-necessarily-distinct rational
numbers, two of which are integers. [3 pts]

b. Find a balanced factorization of any integer m of the form m = x2 − xy for nonzero
integers x and y into six not-necessarily-distinct rational numbers. [3 pts]

P-6. Find a balanced factorization of 12 into 2019 not-necessarily-distinct rational numbers.
[4 pts]

Let n be a positive integer. Then the set Zn is defined as the set of numbers {0, 1, 2, . . . , n − 1}
where addition and multiplication are defined in the following way: a + b is the result when the
sum is divided by n (this is sometimes referred to as a+ b mod n), and a · b is the result when a · b
is divided by n (this is sometimes referred to as a · b mod n). For example, in Z5, 3 + 4 = 2 and
4 · 4 = 1 because the remainders when dividing 7 and 16 by 5 are 2 and 1, respectively. For an
element a of the set Zn, define −a to be the element in Zn such that a+ (−a) = 0.

P-7. Show that every number in Z5 has a balanced factorization into three elements of Z5. [5 pts]

P-8. Show that not every number in Z4 has a balanced factorization into three elements of Z4.
[4 pts]

P-9. In the set Z2, it is possible to achieve a balanced factorization of any element into k = 4
elements of Z2 but it is not always possible to achieve a balanced factorization into k = 5
elements of Z2. Find, with proof, the values of k for which it is possible to achieve a balanced
factorization of any element of Z2 into k elements of Z2. [5 pts]

P-10. Prove that if n > 2, it is not possible for all elements of the set Zn to be broken down into a
balanced factorization of 2 elements of Zn. [5 pts]
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P-1. a. One such factorization is 12 = (4)(−3)(−1).

b. One such factorization is 24 = (1)(4)(−3)(−2).

c. One such factorization is 240 = (10)(−4)(−3)(−2)(−1).

P-2. Solve (−4)(1/6)(x)(y) = 2 and −4 +
1

6
+ x+ y = 0 to obtain xy = −3 and x+ y =

23

6
, which

implies x

Å
23

6
− x
ã

= −3→ x2−23

6
x−3 = 0→ 6x2−23x−18 = 0→ (3x+2)(2x−9) = 0, and

so the solutions are the other two rational numbers in the balanced factorization: −2

3
and

9

2
.

P-3. The balanced factorization would have to be 12 = 1(2)(a)(−a− 3), which implies 6 = −a2 −
3a → a2 + 3a + 6 = 0. The discriminant for this quadratic equation is ∆ = 32 − 4 · 1 · 6 =
9 − 24 = −15 < 0, so the quadratic equation has no real solutions, and thus there is no
balanced factorization of 12 into four rational numbers, two of which are 1 and 2.

P-4. a. One such factorization is 12 = 6 · 6 · (−12) · 1

6
·
Å
−1

6

ã
. To achieve a factorization, make

the first two and last two factors multiply to −1 while the third factor is the additive
inverse of the given number. To achieve the zero sum, make the first three factors add
to 0 and the last two factors add to 0. This process yields the given result.

b. If n = 0, then n = 0 · 0 · 0 · 0 · 0 is a balanced factorization of n. Otherwise, the process

from P-4a generalizes as follows: n =
n

2
· n

2
· (−n) · 2

n
·
Å
− 2

n

ã
.

P-5. a. One such factorization is 28 = 7(7− 3) =
3

2
· 3

2
· (7− 3) · 2

3
·
Å
−2

3

ã
· (−7). To achieve a

factorization, take the additive inverse of one of the given factors, then take four factors
that multiply to −1. To achieve the zero sum, make the two “reciprocal” factors have
opposite signs so that they cancel, and then balance the −3 with two equal factors that
add to 3. This process yields the given result.

b. The process from P-5a generalizes as follows:

m = x(x− y) =
y

2
· y

2
· (x− y) · 2

y
·
Å
−2

y

ã
· (−x).

P-6. Use the factorization from P-4a and include 2019 − 5 = 2014 factors of 1 or −1 in equal

quantities. Thus a balanced factorization would be 6 · 6 · (−12) · 1

6
·
Å
−1

6

ã
· 11007 · (−1)1007.

P-7. The factorizations are as follows: 0 = 0 · 0 · 0, 1 = 3 · 3 · 4, 2 = 2 · 4 · 4, 3 = 1 · 1 · 3, and
4 = 1 · 2 · 2.
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P-8. The number 1 or the number 3 are acceptable counterexamples. Odd numbers must be
products of finitely many odd numbers in Z4, but a sum of an odd number of odd numbers
must be odd, and therefore the factorization cannot be balanced.

P-9. The answer is that a balanced factorization is possible if and only if k is even. For all even k,
ak = a in Z2, and also a · k = 0 in Z2 so the sum will vanish in this set. However, if k is odd,
it is not possible to achieve a balanced factorization of 1 because an odd number of 1’s add
to 1 in Z2.

P-10. If n > 2, then there exists an element of Zn that is not a square. To show this, consider the
set of squares {02, 12, 22, . . . , (n − 1)2}. These numbers have remainders when divided by n.
If all of these remainders are different, then every element of Zn is a square. But 12 = 1 and
(n− 1)2 = n2− 2n+ 1 have the same remainder when divided by n. Therefore, some element
y of Zn is not a remainder when divided by n, and this y is not a square.

However, if an element of Zn has a balanced factorization of 2 elements, that element must
be a square (think: if a = x · (−x), then −a is a square). Therefore, it is not possible to break
down every element of Zn into a balanced factorization of 2 elements.

Note: Those with a background in number theory can note that a residue k (mod n) has
a balanced factorization if and only if there exists an x ∈ Zn such that x(−x) = k, and this
is true if and only if −k is a quadratic residue in Zn.

This Power Question is adapted from the paper Balanced Factorizations, by Anton A. Kly-
achko and Anton N. Vassilyev, which appeared in the MAA Monthly in December 2016.



2019 Relay Problems

R1-1. Compute the least perfect square that is greater than 2019.

R1-2. Let N be the number you will receive. Compute the numerical value ofÅ
1 +

1

2

ãÅ
1 +

1

3

ãÅ
1 +

1

4

ã
· · ·
Å

1 +
1√
N

ã
,

where successive denominators increase by 1.

R1-3. Let N be the number you will receive. Compute the number of noncongruent isosceles triangles
whose side lengths are all positive integers and whose perimeter is N .

R2-1. Compute the least positive integer n for which the quantity
√

20 + 19
√
n is also an integer.

R2-2. Let N be the number you will receive. Compute the least positive integer k such that

sin(k ·N◦) ≥ cos(k ·N◦).

R2-3. Let N be the number you will receive. The graph of the parabola y = x2−mx+N never goes
below the line y = m. Compute the greatest possible value of m.
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2019 Relay Answers

R1-1. 2025

R1-2. 23

R1-3. 6

R2-1. 256

R2-2. 2

R2-3. 2
√

3− 2
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2019 Relay Solutions

R1-1. Because 442 = 1936 and 452 = 2025, the least perfect square greater than 2019 is 2025.

R1-2. The given expression has the value
3

2
· 4
3
· 5
4
· · · · ·

√
N + 1√
N

=

√
N + 1

2
. Substituting

√
N = 45,

this has value 23.

R1-3. The congruent sides cannot have side length N
4

or shorter, and the base must have a length
that is at least 1 and that has the same parity as N . Substituting N = 23, the congruent
sides must have length at least 6 and cannot have length greater than 23−1

2
= 11. But the

triangles with side lengths {6, 6, 11}, {7, 7, 9}, {8, 8, 7}, {9, 9, 5}, {10, 10, 3}, {11, 11, 1} are all
noncongruent, so the answer is 6.

R2-1. Find the least n for which 20+19
√
n is a square. For this to be a square,

√
n must be a positive

integer, say y. Now let this quantity 20+19y be x2. Then x2−1 = (x−1)(x+1) = 19(y+1).
The least x for which 19 divides (x − 1)(x + 1) is the x for which x + 1 = 19, i.e., x = 18.
Then y + 1 = x− 1, so y = 16 and n = y2 = 256.

R2-2. The interval in [0◦, 360◦] for which sin(x) ≥ cos(x) is [45◦, 225◦]. Therefore, modulo 360, find
the least positive integer k such that kN is within the interval [45, 225]. With N = 256,
2N = 512 = 360 + 152, so the least such k is 2.

R2-3. Because x2 −mx+N ≥ m for all positive reals x,

x2 −mx+N −m =
(
x− m

2

)2
+N −m− m2

4
≥ 0.

This is only possible if N ≥ m+m2

4
. Substituting N = 2, and because the parabola y = m+m2

4

slopes upward, the greatest possible value of m is the greatest root of 1
4
m2 +m− 2 = 0. This

root is
−1 +

»
12 − 4 · 1

4
· (−2)

2 · 1
4

=
−1 +

√
3

1/2
= 2
√

3− 2.
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2019 Tiebreaker Problems

TB-1. A positive integer is said to be spaced out if every digit of the number differs from every other
digit of the number by at least 2. For example, 285 and 29460 are spaced out, but 585, 10,
and 374 are not. Compute the number of spaced out integers between 1000 and 9999.

TB-2. Lori divides 2019 by all integers from 1 through 2019 and records all 2019 remainders. Com-
pute the greatest remainder that is recorded at least three times.
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2019 Tiebreaker Answers

TB-1. 720

TB-2. 501
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2019 Tiebreaker Solutions

TB-1. Consider first all spaced out numbers not containing a zero. To form a spaced out number
not containing a zero, choose four non-consecutive numbers from the list {1, 2, 3, . . . , 9}. Use
a version of the classic “sticks and stones” technique. Consider placing stones into 4 of the
6 blanks in the sequence | | | | | . Then number the stones and dividing sticks from 1
through 9 ignoring any unused blanks. The digits corresponding to the stones are the digits
to use. For example, the diagram ∗ | ∗ | ∗ | | ∗ | represents the digits 1, 3, 5, and 8 (where the
∗’s represent stones). Because it is not possible to place two stones into one blank, there must
be at least one dividing stick between any two stones, so the digits will all be nonconsecutive.
Reversing this process shows that every set of four nonconsecutive digits (none of which is
0) has such a diagram, so there is a one-to-one correspondence between diagrams and sets

of four nonconsecutive digits. Thus there are

Ç
6

4

å
= 15 possible selections. Each selection

has 4! = 24 permutations, so there are 15 ·24 = 360 spaced out numbers not containing a zero.

Now consider spaced out numbers containing the digit 0. Such a number cannot contain
a 1 but will contain three nonconsecutive digits from the list {2, 3, 4, . . . , 9}. Using the same

technique as the first case, there are

Ç
6

3

å
= 20 possible selections of three digits from the

list. For each selection, the 0 cannot be in the thousands place, so there are 3 · 3 · 2 · 1 = 18
permutations, yielding 20 · 18 = 360 spaced out numbers one of whose digits is 0. Thus the
total number of spaced out integers between 1000 and 9999 is 360 + 360 = 720.

TB-2. To begin, consider the remainders obtained by dividing 2019 by each integer from 2019 down
to 1. The first 1010 remainders obtained in this way are 0, 1, 2, . . . , 1008, 1009. Dividing 2019
by 1009 yields a remainder of 1, and the next 335 remainders are 3, 5, . . . , 671. Dividing 2019
by 673 yields a remainder of 0, and the next 168 remainders are 3, 6, 9, . . . , 504. Dividing 2019
by 504 yields a remainder of 3.
Notice that 504 is the greatest number that could appear in the list three times, but 504 is
not an odd number, so it does not appear among 1, 3, 5, . . . , 671.
Thus 501 is the greatest number that appears in the list three times, as it is clearly in the list
0, 1, 2, . . . , 1009 and in the list 1, 3, 5, . . . , 671 and in the list 3, 6, 9, . . . , 504. The remainders
when dividing 2019 by 503 and 502 are 7 and 11, respectively. After that, it is impossible for
a division of 2019 by a number less than or equal to 501 to have a remainder of 501. Thus
the greatest remainder that is recorded at least three times is 501.
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